Curve Sketching \&

Calculus

The First Derivative $y^{\prime}, f^{\prime}(x), \frac{d}{d x}\{f(x)\}, \frac{d y}{d x}$ $\frac{d y}{d x}$ measures the slope of the tangent to a curve

$$
\text { If } f^{\prime}(x)>0 \text {, the curve is increasing }
$$

If $f^{\prime}(x)<0$, the curve is decreasing
If $f^{\prime}(x)=0$, the curve is stationary
e.g. For the curve $y=3 x^{2}-x^{3}$, find all of the stationary points and determine their nature.
Hence sketch the curve

$$
\frac{d y}{d x}=6 x-3 x^{2}
$$

Stationary points occur when $\frac{d y}{d x}=0$
i.e. $6 x-3 x^{2}=0$

$$
\begin{gathered}
3 x(2-x)=0 \\
x=0 \quad \text { or } x=2
\end{gathered}
$$

\therefore stationary points occur at $(0,0)$ and $(2,4)$
$(0,0)$

$\therefore(0,0)$ is a minimum turning point
$(2,4)$

$\therefore \underline{(2,4) \text { is a maximum turning point }}$

Exercise 4A; 1, 2ace, 4, 5, 6ac, 7, 8, 11, 12ace etc, 13, 15

Exercise 4B; 3ad, 6, 8ac, 9, 11, 14 to 17, 19

