Trapezoidal Rule

$$y = f(x)$$

$$A \approx \frac{c-a}{2} \{f(a) + f(c)\} + \frac{d-c}{2} \{f(c) + f(d)\}$$

$$+ \frac{b-d}{2} \{f(d) + f(b)\}$$

$$= \frac{c-a}{2} \{f(a) + 2f(c) + 2f(d) + f(b)\}$$

In general;
$$Area = \int_{a}^{b} f(x)dx$$

$$\approx \frac{h}{2} \{y_0 + 2y_{others} + y_n\}$$
where $h = \frac{b-a}{n}$

n = number of trapeziums

NOTE: there is always one more function value than interval

e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve $y = (4 - x^2)^{\frac{1}{2}}$, between x = 0 and x = 2 (correct to 3 decimal points)

$$h = \frac{b-a}{n}$$

$$= \frac{2-0}{4}$$

$$= 0.5$$

$$= \frac{b-a}{2}$$

$$= \frac{2-0}{4}$$

$$= 0.5$$

$$= \frac{b-a}{2}$$

$$= \frac{b-a}{2}$$

$$= \frac{0.5}{2} \{y_0 + 2y_{others} + y_n\}$$

$$= \frac{0.5}{2} \{2 + 2(1.9365 + 1.7321 + 1.3229) + 0\}$$

$$= 2.996 \text{ units}^2$$

% error =
$$\frac{3.142 - 2.996}{3.142} \times 100$$

= 4.6%

Alternative working out!!!

	1	2	2	2	1
$\boldsymbol{\mathcal{X}}$	0	0.5	1	1.5	2
У	2	1.9365	1.7321	1.3229	0

Area
$$\approx \frac{2 + 2(1.9365 + 1.7321 + 1.3229) + 0}{1 + 2 + 2 + 2 + 1} \times (2 - 0)$$

= 2.996 units²

e.g. 2020 HSC Question 20

Kenzo is driving his car along a road while his friend records the velocity of the car, v(t), in km/h every minute over a 5-minute period. The table gives the velocity v(t) at time t hours

t	0	$\frac{1}{60}$	$\frac{2}{60}$	$\frac{3}{60}$	$\frac{4}{60}$	$\frac{5}{60}$
v(t)	60	55	65	68	70	67

The distance covered by the car over the 5-minute period is given by

$$\int_{0}^{\frac{5}{60}} v(t)dt$$

Use the trapezoidal rule and the velocity at each of the six time values to find the approximate distance in kilometres the car has travelled in the 5-minute period. Give your answer correct to one decimal place.

Distance
$$\approx \frac{h}{2} \{y_0 + 2y_{\text{others}} + y_n \}$$

$$= \frac{1}{60} \{60 + 2(55 + 65 + 68 + 70) + 67 \}$$

$$= \frac{643}{120}$$

$$= 5.4 \text{ km (to 1 dp)}$$

OR

Distance
$$\approx \frac{60 + 2(55 + 65 + 68 + 70) + 87}{1 + 2 + 2 + 2 + 2 + 1} \times \left(\frac{5}{60} - 0\right)$$

= 5.3583333...
= 5.4 km (to 1 dp)

Exercise 5H; 4, 5, 6, 7, 8ab, 10, 12, 14, 15