

$$h^{2} = b^{2} - x^{2}$$

$$c^{2} = h^{2} + (a - x)^{2}$$

$$c^{2} = b^{2} - x^{2} + a^{2} - 2ax + x^{2}$$

$$= b^{2} + a^{2} - 2ax$$
But $\frac{x}{b} = \cos C$

$$x = b \cos C$$

$$\therefore c^{2} = b^{2} + a^{2} - 2ab \cos C$$

In any $\triangle ABC$ $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$

2003 Extension 1 HSC Q7a)

David is in a life raft and Anna is in a cabin cruiser searching for him. They are in contact by mobile phone. David tells Ana that he can see Mt Hope. From David's position the mountain has a bearing of 109°, and the angle of elevation to the top of the mountain is 16.

Anna can also see Mt Hope. From her position it has a bearing of 139° , and and the top of the mountain has an angle of elevation of 23° .

The top of Mt Hope is 1500 m above sea level.

Find the distance and bearing of the life raft from Anna's position.

$\frac{BD}{1500} = \tan 74^{\circ}$ $BD = 1500 \tan 74^{\circ}$	Similarly; $AB = 1500 \tan 67^{\circ}$
$\angle NDB + \angle DBN'' = 180$ $109^{\circ} + \angle DBN'' = 180^{\circ}$ $\angle DBN'' = 71^{\circ}$	(cointerior \angle 's = 180, ND N"B)
Similarly; $\angle ABN'' = 41^{\circ}$	
$\angle ABD = \angle DBN'' - \therefore \angle ABD = 30^{\circ}$	$\angle ABN$ " (common \angle 's)

- $b^{2} = 1500^{2} \tan^{2} 67^{\circ} + 1500^{2} \tan^{2} 74^{\circ} 2 \times 1500 \tan 67^{\circ} \times 1500 \tan 74^{\circ} \cos 30^{\circ}$ b = 2798.96...
 - = 2799 (to nearest metre)

Anna and David are 2799 m apart.	
	Exercise 6J; 1e, 2f, 3a, 5b, 6,
$\frac{\sin \angle DAB}{\sin 30^{\circ}} = \frac{\sin 30^{\circ}}{\sin 30^{\circ}}$	7, 8, 11, 13, 15, 16, 17
$1500 \tan 74^\circ b$	
$\sin \angle DAB = \frac{1500\tan 74^\circ \sin 30^\circ}{b}$	Exercise 6K; 4, 5, 6, 10, 11, 12, 13, 14, 17, 19, 20
$\angle DAB = 69^{\circ}9'$ or $110^{\circ}51'$	
If $\angle DAB = 69^{\circ}9'$	
then $\angle BDA = 80^{\circ}51'$	
But $\angle DAB > \angle BDA$	
$\therefore \angle BDA = 110^{\circ}51'$ \therefore The beau	ring of David from Anna is 249°51'