Cosine Rule

> In any $\triangle \mathrm{ABC}$
> $a^{2}=b^{2}+c^{2}-2 b c \cos A$
> $b^{2}=a^{2}+c^{2}-2 a c \cos B$
> $c^{2}=a^{2}+b^{2}-2 a b \cos C$

$$
\begin{gathered}
h^{2}=b^{2}-x^{2} \\
c^{2}=h^{2}+(a-x)^{2} \\
\therefore c^{2}=b^{2}-x^{2}+a^{2}-2 a x+x^{2} \\
=b^{2}+a^{2}-2 a x \\
\text { But } \frac{x}{b}=\cos C \\
x=b \cos C \\
\therefore c^{2}=b^{2}+a^{2}-2 a b \cos C
\end{gathered}
$$

(iii)

2003 Extension 1 HSC Q7a)

David is in a life raft and Anna is in a cabin cruiser searching for him. They are in contact by mobile phone. David tells Ana that he can see Mt Hope. From David's position the mountain has a bearing of 109°, and the angle of elevation to the top of the mountain is 16°

Anna can also see Mt Hope. From her position it has a bearing of 139°, and and the top of the mountain has an angle of elevation of 23°.

The top of Mt Hope is 1500 m above sea level.
Find the distance and bearing of the life raft from Anna's position.

$$
\begin{aligned}
\frac{B D}{1500}=\tan 74^{\circ} & \text { Similarly; } \\
B D=1500 \tan 74^{\circ} & A B=1500 \tan 67^{\circ} \\
\angle N D B+\angle D B N^{\prime \prime}=180 & \left(\text { cointerior } \angle ' \mathrm{~s}=180, \mathrm{ND} \| \mathrm{N}^{\circ} \mathrm{B}\right) \\
109^{\circ}+\angle D B N^{\prime \prime}=180^{\circ} & \\
\angle D B N^{\prime \prime}=71^{\circ} &
\end{aligned}
$$

Similarly;

$$
\begin{aligned}
\angle A B N^{\prime \prime} & =41^{\circ} \\
\angle A B D & =\angle D B N^{\prime \prime}-\angle A B N^{\prime \prime} \quad \text { (common } \angle \text { 's) } \\
\therefore \angle A B D & =30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
b^{2} & =1500^{2} \tan ^{2} 67^{\circ}+1500^{2} \tan ^{2} 74^{\circ}-2 \times 1500 \tan 67^{\circ} \times 1500 \tan 74^{\circ} \cos 30^{\circ} \\
b & =2798.96 \ldots \\
& =2799 \text { (to nearest metre) }
\end{aligned}
$$

Anna and David are 2799 m apart.

$$
\frac{\sin \angle D A B}{1500 \tan 74^{\circ}}=\frac{\sin 30^{\circ}}{b}
$$

$$
\sin \angle D A B=\frac{1500 \tan 74^{\circ} \sin 30^{\circ}}{b}
$$

$$
\angle D A B=69^{\circ} 9^{\prime} \text { or } 110^{\circ} 51^{\prime}
$$

$$
\text { If } \angle D A B=69^{\circ} 9^{\prime}
$$

$$
\text { then } \angle B D A=80^{\circ} 51^{\prime}
$$

But $\angle D A B>\angle B D A$
$\therefore \angle B D A=110^{\circ} 51^{\prime} \quad \therefore$ The bearing of David from Anna is $249^{\circ} 51^{\prime}$

