## The Slope (Gradient)

$$
\text { (1) } m=\frac{\text { vertical rise }}{\text { horizontal run }}
$$

(2) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
m_{l}=\frac{5-1}{5-2}
$$

$$
=\frac{4}{3}
$$

(3) $m=\tan \theta$
$\theta$ is the angle of inclination with the positive $x$ axis


$$
\begin{aligned}
m_{L} & =\tan 120^{\circ} \\
& =-\sqrt{3} \\
m_{l} & =\tan \alpha \\
\tan \alpha & =\frac{4}{3} \\
\alpha & =53^{\circ}
\end{aligned}
$$

Two lines are parallel iff they have the same slope

$$
\text { i.e. } m_{1}=m_{2}
$$

Two lines are perpendicular iff their slopes are the negative inverse of each other

$$
\text { i.e. } m_{1} \times m_{2}=-1
$$

e.g. $A, B, C$ and $D$ are the points $(1,1),(2,3),(3,2)$ and $(a, 4)$

Find $a$ such that;
(a) $A B \| C D$
$m_{A B}=\frac{3-1}{2-1}$
$=2$
$m_{C D}=\frac{4-2}{a-3}$

$$
=\frac{2}{a-3}
$$

(b) $A B \perp C D$

If $A B \perp C D$ then

$$
\begin{aligned}
m_{A B} \times m_{C D} & =-1 \\
2 \times \frac{2}{a-3} & =-1 \\
4 & =-a+3 \\
a & =-1
\end{aligned}
$$

(ii) $A(4,0), B(1,5)$ and $C(-3,-5)$ are three vertices of a parallelogram $A B C D$. Find the coordinates of $D$, the fourth vertex of the parallelogram. ${ }^{\boldsymbol{y}}{ }_{\uparrow}$

$$
\begin{aligned}
D & =(-3+3,-5-5) \\
& =(0,-10)
\end{aligned}
$$

```
To prove three points \((A, B, C)\) are collinear;
(i) find \(m_{A B}\)
(ii) find \(m_{A C}\)
(iii) if \(m_{A B}=m_{A C}\) then \(A, B, C\) are collinear
```

Exercise 7B; 2ace, 3bdf, 4, 6bd, 7bd, 8, 9ac, 10, 12, 14, 15ad, 16, 17, 18, 20, 22

