Expectation

Let X be a **discrete random variable**, then the expected value of X is;

$$E(X) = \sum xp(x)$$

$$E(X) = \sum xp(x)$$
where $p(x) = P(X = x) \ge 0$

Note: $E(X) = \mu$ (arithmetic mean)

E(X) is a measure of central tendency

Laws of Expectation

1. If a and b are constants; E(aX + b) = aE(X) + b

Proof:
$$E(aX + b) = \sum (ax + b) p(x)$$
$$= \sum axp(x) + \sum bp(x)$$
$$= a \sum xp(x) + b \sum p(x)$$
$$= aE(X) + b$$

2.
$$E(X + Y) = E(X) + E(Y)$$

e.g.In a marketing survey, 25 families are polled to finf the number of litres of milk consumed during a particular week.

The results were;

# of litres	0	1	2	3	4	5
# of families	2	5	9	5	3	1

Based on this data, how manylitres of milk would you expect a similar family to consume in a week?

x	0	1	2	3	4	5	Σ
p(x)	2 25	5 25	9 25	5 25	$\frac{3}{25}$	$\frac{1}{25}$	1
xp(x)	0	<u>5</u> 25	18 25	15 25	12 25	5 25	2.2

$$E(X) = \sum xp(x) \quad \text{or} \quad E(X) = \mu$$

$$= 2.2$$

$$= \frac{0 \times 2 + 1 \times 5 + 2 \times 9 + 3 \times 5 + 4 \times 3 + 5 \times 1}{25}$$

= 2.2

We would expect a family to consume 2.2 L of milk weekly

Note: Random variables have an expected value
Sample spaces have a mean

Exercise 13B; 2, 3, 4a, 5, 6, 7adf, 8, 9, 10, 11, 12, 13, 14