## Vectors in 3D

## Unit Vectors

Every non-zero vector has a corresponding unit vector with the same direction

$$
\underset{\sim}{a}=\frac{a}{|\underset{\sim}{a}|} \text { and }\left|\begin{array}{l}
\wedge \\
\underset{\sim}{a} \mid
\end{array}\right|
$$

## Three Special Unit Vectors

All vectors can be rewritten in terms of components, three special unit vectors that are orthogonal (mutually perpendicular).

For convenience we will define them to be in the same orientation as the Cartesian space.


## Component Form of a Position Vector



$$
\underset{\sim}{u}=\overrightarrow{\mathrm{OP}}=(x, y, z)=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=x \underset{\sim}{\underset{\sim}{i}}+\underset{\sim}{j} \underset{\sim}{j}+\underset{\sim}{\underset{\sim}{k}}
$$

| position | ordered | column | component |
| :---: | :---: | :---: | :---: |
| vector | triple | vector | form |

$$
|\underset{\sim}{u}|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

e.g. $A B C D$ is a parallelogram. The coordinates of $A, B$ and $D$ are $(4,2,3),(18,4,8)$ and $(-1,12,13)$ respectively.
a) Find the vectors $\overrightarrow{A B}$ and $\overrightarrow{A D}$

$$
\begin{array}{rlrl}
\overrightarrow{A B} & =\left(\begin{array}{c}
18 \\
4 \\
8
\end{array}\right)-\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right) & \overrightarrow{\mathrm{AD}} & =\left(\begin{array}{r}
-1 \\
12 \\
13
\end{array}\right)-\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right) \\
& =\left(\begin{array}{c}
14 \\
2 \\
5
\end{array}\right) & =\left(\begin{array}{r}
-5 \\
10 \\
10
\end{array}\right)
\end{array}
$$

b) Find the coordinates of $C$
$A B C D$ is a parallelogram
$\therefore \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{DC}}$

$$
\begin{aligned}
C-D & =B-A \\
C & =B-A+D
\end{aligned}
$$

$\therefore C$ is $(13,14,18)$

$$
\begin{aligned}
C & =\left(\begin{array}{c}
18 \\
4 \\
8
\end{array}\right)-\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right)+\left(\begin{array}{c}
-1 \\
12 \\
13
\end{array}\right) \\
& =\left(\begin{array}{l}
13 \\
14 \\
18
\end{array}\right)
\end{aligned}
$$

## Division Of An Interval

Midpoint is dividing an interval in the ratio 1:1
You can of course, divide an interval in a any ratio, and it could be either an internal or an external division.

$P$ divides $A B$ internally in the ratio $m: n$

OR
$P$ divides $B A$ internally in the ratio $n: m$
$P$ divides $A B$ externally in the ratio $m: n$

If $P$ divides $A B$ in the ratio $m: n$, then;

$$
\underset{\sim}{p}=\frac{1}{m+n}(n \underset{\sim}{a}+m \underset{\sim}{b})
$$

where $\underset{\sim}{a}, \underset{\sim}{b}$ and $p$ are the position vectors of $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O P}$

## Type 1: Internal Division

Find the coordinates of $P$ that divides the interval joining $\left(\begin{array}{c}-3 \\ 4 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}5 \\ 6 \\ 3\end{array}\right)$ internally in the ratio $1: 3$

$$
\underset{\sim}{p}=\frac{3}{4}\left(\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right)+\frac{1}{4}\left(\begin{array}{l}
5 \\
6 \\
3
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
1 \\
\frac{9}{2} \\
\frac{3}{2}
\end{array}\right)
$$

$$
\therefore P \text { is }\left(1, \frac{9}{2}, \frac{3}{2}\right)
$$

## Type 2: External Division (negative ratio)

Let $\underset{\sim}{a}=\left(\begin{array}{c}3 \\ -1 \\ 6\end{array}\right)$ and $\underset{\sim}{\underset{\sim}{b}}=\left(\begin{array}{c}9 \\ 2 \\ -3\end{array}\right)$
Find the position vector that divides $A B$ externally in the ratio $5: 2$. (Done exactly the same as internal division, except make one of the numbers in the ratio negative)

$$
\begin{aligned}
& \underset{\sim}{p}=-\frac{2}{3}\left(\begin{array}{c}
3 \\
-1 \\
6
\end{array}\right)+\frac{5}{3}\left(\begin{array}{c}
9 \\
2 \\
-3
\end{array}\right) \\
& \underset{\sim}{p}=\left(\begin{array}{c}
13 \\
4 \\
-9
\end{array}\right)
\end{aligned}
$$

Divide externally in the ratio 5:2
is the same as divide in the ratio 5: - 2

Exercise 5B; 1a, 2b, 4ab, 6, 8, 10, 12, 14, 15, 16, 17, 18

