Dot Product

A vector is a line segment in both 2D & 3D, the rules and properties remain the same in both dimensions.

If $\underbrace{u}_{\sim} \neq 0 \land \underbrace{v}_{\sim} \neq 0$ $\underbrace{u}_{\sim} \cdot \underbrace{v}_{\sim} = |\underbrace{u}_{\sim}||\underbrace{v}_{\sim}|\cos\theta$ NOTE: θ is acute or obtuse If $\underbrace{u}_{\sim} = 0 \lor \underbrace{v}_{\sim} = 0$ $u \cdot v = 0$ If $\underbrace{u}_{\sim} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ and $\underbrace{v}_{\sim} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$ $\underbrace{u}_{\sim} \cdot \underbrace{v}_{\sim} = x_1 x_2 + y_1 y_2 + z_1 z_2$

(1)
$$-|\underline{u}||\underline{v}| \leq \underline{u} \cdot \underline{v} \leq |\underline{u}||\underline{v}|$$

(5) $(\underline{u} + \underline{v}) \cdot (\underline{u} - \underline{v}) = \underline{u} \cdot \underline{u} - \underline{v} \cdot \underline{v}$
 $= |\underline{u}|^2 - |\underline{v}|^2$
(2) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$
(3) $\underline{u} \cdot \underline{u} = x_1^2 + y_1^2$
 $= |\underline{u}|^2$
(4) $\underline{a} \cdot (\underline{u} + \underline{v}) = \underline{a} \cdot \underline{u} + \underline{a} \cdot \underline{v}$
(5) $(\underline{u} + \underline{v}) \cdot (\underline{u} - \underline{v}) = \underline{u} \cdot \underline{u} + \underline{v}_1^2$
(6) $\lambda \underline{u} \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$
(7) $\underline{u} \cdot \underline{v} = 0 \Leftrightarrow \underline{u} \perp \underline{v}$
(8) $\underline{u} \cdot \underline{v} = \pm |\underline{u}||\underline{v}| \Leftrightarrow \underline{u} \parallel \underline{v}$
(9) $|\underline{u}||\underline{v}| > 0 \Rightarrow \underline{u}$ and \underline{v} have the same direction
 $|\underline{u}||\underline{v}| < 0 \Rightarrow \underline{u}$ and \underline{v} have opposite directions

eg (i) Let a, b and c be three 3-dimensional vectors. Prove that $a \cdot (b + c) = a \cdot b + a \cdot c$ $a \cdot (b + c)$ $= \left(a_{1} \underbrace{i}_{2} + a_{2} j + a_{3} \underbrace{k}_{2}\right) \cdot \left[(b_{1} + c_{1}) \underbrace{i}_{2} + (b_{2} + c_{2})j + (b_{3} + c_{3}) \underbrace{k}_{2}\right]$ $= a_1(b_1 + c_1) + a_2(b_2 + c_2) + a_3(b_3 + c_3)$ $= a_1 b_1 + a_1 c_1 + a_2 b_2 + a_2 c_2 + a_3 b_3 + a_3 c_3$ $= (a_1 b_1 + a_2 b_2 + a_3 b_3) + (a_1 c_1 + a_2 c_2 + a_3 c_3)$ $= a \cdot b + a \cdot c$

(ii) Prove that the vectors $3\underline{i} - 2\underline{j} + 4\underline{k}$ and $-4\underline{i} - 8\underline{j} - \underline{k}$ are perpendicular $\begin{pmatrix} 3\underline{i} - 2\underline{j} + 4\underline{k} \\ \sim \end{pmatrix} \cdot \begin{pmatrix} -4\underline{i} - 8\underline{j} - \underline{k} \\ \sim \end{pmatrix} = (3)(-4) + (-2)(-8) + (4)(-1) \\ = 0 \\ \vdots \\ \begin{pmatrix} 3\underline{i} - 2\underline{j} + 4\underline{k} \\ \sim \end{pmatrix} \bot \begin{pmatrix} -4\underline{i} - 8\underline{j} - \underline{k} \\ \sim \end{pmatrix}$ (iii) The point A has (non-zero) position vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and the vector \overrightarrow{OA}

makes angles α , β and γ with the *x*, *y* and *z* axes respectively

