Dot Product

A vector is a line segment in both $2 \mathrm{D} \& 3 \mathrm{D}$, the rules and properties remain the same in both dimensions.

$$
\text { If } \begin{aligned}
& \underset{\sim}{u} \neq 0 \wedge \underset{\sim}{v} \neq 0 \\
& \underset{\sim}{u} \cdot \underset{\sim}{v}=|\underset{\sim}{u}| \underset{\sim}{v} \mid \cos \theta
\end{aligned}
$$

NOTE: θ is acute or obtuse

$$
\begin{aligned}
& \text { If } \underset{\sim}{u}=\left(\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \text { and } \underset{\sim}{v}=\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) \\
& \underset{\sim}{u} \cdot \underset{\sim}{v}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \underset{\sim}{u}=0 \vee \underset{\sim}{v} \underset{\sim}{v}=0 \\
& \underset{\sim}{u} \cdot \underset{\sim}{v}=0
\end{aligned}
$$

Dot Product Properties

(1) $-\underset{\sim}{u}| | \underset{\sim}{v}|\leq \underset{\sim}{u} \cdot \underset{\sim}{v} \leq|\underset{\sim}{u} \| \underset{\sim}{v}|$
(5) $\begin{aligned}(\underset{\sim}{u}+\underset{\sim}{v}) \cdot(\underset{\sim}{u}-\underset{\sim}{v}) & =\underset{\sim}{u} \cdot \underset{\sim}{u} \\ & =\left.\underset{\sim}{u}\right|^{2}-\left.\underset{\sim}{v} \cdot \underset{\sim}{v}\right|^{v}\end{aligned}$
(2) $\underset{\sim}{u} \cdot \underset{\sim}{v}=\underset{\sim}{v} \cdot \underset{\sim}{u}$
(6) $\lambda \underset{\sim}{u} \cdot \underset{\sim}{v}=\lambda(\underset{\sim}{u} \cdot \underset{\sim}{v})$
(3) $\underset{\sim}{u} \cdot \underset{\sim}{u}=x_{1}{ }^{2}+y_{1}{ }^{2}$
(7) $\underset{\sim}{u} \cdot \underset{\sim}{v}=0 \Leftrightarrow \underset{\sim}{u} \perp \underset{\sim}{v}$

$$
=|\underset{\sim}{u}|^{2}
$$

(4) $\underset{\sim}{a} \cdot(\underset{\sim}{u}+\underset{\sim}{v})=\underset{\sim}{a} \cdot \underset{\sim}{u}+\underset{\sim}{a} \cdot \underset{\sim}{v}$
(8) $\underset{\sim}{u} \cdot \underset{\sim}{v}= \pm|\underset{\sim}{u}\|\underset{\sim}{v} \mid \Leftrightarrow \underset{\sim}{u}\| \underset{\sim}{v}$
(9) $\underset{\sim}{u} \| \underset{\sim}{v}|>0 \Rightarrow \underset{\sim}{v}|<0$ and $\underset{\sim}{v}$ have the same direction $|\underset{\sim}{u} \| \underset{\sim}{v}|<0 \Rightarrow \underset{\sim}{u}$ and $\underset{\sim}{v}$ have opposite directions
eg (i) Let $\underset{\sim}{a} \underset{\sim}{b}$ and $\underset{\sim}{c}$ be three 3-dimensional vectors.
Prove that $\underset{\sim}{a} \cdot(\underset{\sim}{b}+\underset{\sim}{c})=\underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{a} \cdot \underset{\sim}{c}$

$$
\begin{aligned}
& \underset{\sim}{a} \cdot(\underset{\sim}{b}+\underset{\sim}{c}) \\
& =\left(a_{1} \underset{\sim}{i}+a_{2} \underset{\sim}{j}+a_{3} \underset{\sim}{k}\right) \cdot\left[\left(b_{1}+c_{1}\right) i+\left(b_{2}+c_{2}\right) j+\left(b_{3}+c_{3}\right) \underset{\sim}{k}\right] \\
& =a_{1}\left(b_{1}+c_{1}\right)+a_{2}\left(b_{2}+c_{2}\right)+a_{3}\left(b_{3}+c_{3}\right) \\
& =a_{1} b_{1}+a_{1} c_{1}+a_{2} b_{2}+a_{2} c_{2}+a_{3} b_{3}+a_{3} c_{3} \\
& =\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)+\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right) \\
& =\underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{a} \cdot \underset{\sim}{c}
\end{aligned}
$$

(ii) Prove that the vectors $3 \underset{\sim}{i}-2 j+4 \underset{\sim}{k}$ and $-4 \underset{\sim}{i}-8 \underset{\sim}{j}-\underset{\sim}{k}$ are perpendicular

$$
\begin{aligned}
&(3 \underset{\sim}{i}-2 \underset{\sim}{j}+4 \underset{\sim}{k}) \cdot(-4 \underset{\sim}{i}-8 \underset{\sim}{j}-\underset{\sim}{k})=(3)(-4)+(-2)(-8)+(4)(-1) \\
&=0 \\
& \therefore(\underset{\sim}{i} \underset{\sim}{i}-2 \underset{\sim}{j}+4 \underset{\sim}{k}) \perp(-4 \underset{\sim}{i}-8 \underset{\sim}{j}-\underset{\sim}{k})
\end{aligned}
$$

(iii) The point A has (non-zero) position vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and the vector $\overrightarrow{O A}$ makes angles α, β and γ with the x, y and z axes respectively

By taking a dot product with the three unit vectors $\underset{\sim}{i}, j, \underset{\sim}{k}$ prove that \quad Exercise 5C; $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$

$$
\operatorname{let} \underset{\sim}{u}=a \underset{\sim}{i}+b \underset{\sim}{j}+\underset{\sim}{k} ;
$$

18, 20, 21

$$
\begin{array}{ll}
\therefore \quad a & =\sqrt{a^{2}+b^{2}+c^{2}} \cos \alpha \\
\cos ^{2} \alpha & =\frac{a^{2}}{a^{2}+b^{2}+c^{2}} \\
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{a+b^{2}+c^{2}}{a^{2}+b^{2}+c^{2}} & \cos ^{2} \gamma=\frac{c^{2}}{a^{2}+b^{2}+c^{2}}
\end{array}
$$

