Polynomial Results

1. If $P(x)$ has k distinct real zeros, $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$, then; $\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots\left(x-a_{k}\right)$ is a factor of $P(x)$.
e.g. Show that 1 and -2 are zeros of $P(x)=x^{4}+x^{3}+3 x^{2}+5 x-10$ and hence factorise $P(x)$.

$$
\begin{aligned}
P(1) & =(1)^{4}+(1)^{3}+3(1)^{2}+5(1)-10 \\
& =0 \\
P(-2) & =(-2)^{4}+(2)^{3}+3(-2)^{2}+5(-2)-10 \\
& =0 \quad \therefore 1,-2 \text { are zeros of } P(x) \text { and }(x-1)(x+2) \text { is a factor } \\
P(x) & =x^{4}+x^{3}+3 x^{2}+5 x-10 \\
& =\left(x^{2}+x-2\right)\left(x^{2}+5\right) \\
& =(x-1)(x+2)\left(x^{2}+5\right)
\end{aligned}
$$

2. If $P(x)$ has degree n and has n distinct real zeros, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$, then $P(x)=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)$
3. A polynomial of degree n cannot have more than n distinct real zeros
e.g. The polynomial $P(x)$ has a double zero at -7 and a single zero at 2 .

Write down;
a) a possible polynomial

$$
P(x)=k(x-2)(x+7)^{2} Q(x)
$$

where $-Q(x)$ is a polynomial and does not have a zero at 2 or -7

- k is a real number
b) a monic polynomial of degree 3 .

$$
P(x)=(x-2)(x+7)^{2}
$$

c) A monic polynomial of degree 4

$$
\frac{P(x)=(x-2)(x+7)^{2}(x-a)}{\text { where } a \neq 2 \text { or }-7}
$$

d) a polynomial of degree 5 .

$$
P(x)=k(x-2)(x+7)^{2} Q(x)
$$

where $-Q(x)$ is a polynomial of degree 2 , and does not have a zero at 2 or -7

- k is a real number

4. If $P(x)$ has degree n and has more than n real zeros, then $P(x)$ is the zero polynomial. i.e. $P(x)=0$ for all values of x
5. If $P(x) \equiv Q(x)$ (i.e. the two polynomials are identically equal), then the coefficients of each corresponding term must be equal.
i.e. if ;

$$
\begin{aligned}
& a_{1} x^{n}+b_{1} x^{n-1}+c_{1} x^{n-2}+\ldots+d_{1} x+e_{1} \equiv a_{2} x^{n}+b_{2} x^{n-1}+c_{2} x^{n-2}+\ldots+d_{2} x+e_{2} \\
& a_{1}=a_{2} \\
& b_{1}=b_{2} \\
& c_{1}=c_{2} \\
& \vdots \\
& d_{1}=d_{2} \\
& e_{1}=e_{2}
\end{aligned}
$$

Exercise 10E; 1, 3bd, 4a, 5b, 6a, 8, 10, 12ad, 14

