Binomial Distribution

A binomial distribution is one that consists of *n* repeated independent Bernoulli trials, where the probability of success is constant from trial to trial.

X represents a random variable denoting the number of successes in *n* Bernoulli trials

$$P(X = x) = \binom{n}{x} (1-p)^{n-x} p^{x}$$

where: *p* is the probability of success in an individual trial *x* is the number of successes *n* is the number of trials

x	0	1	2	•••	п	Σ
<i>p</i> (<i>x</i>)	$\binom{n}{0}p^0q^n$	$\binom{n}{1}p^1q^{n-1}$	$\binom{n}{2}p^2q^{n-2}$		$\binom{n}{n}p^nq^0$	1
xp(x)	0	$\binom{n}{1}p^1q^{n-1}$	$2\binom{n}{2}p^2q^{n-2}$		$n\binom{n}{n}p^nq^0$	$\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k}$
$x^2p(x)$	0	$\binom{n}{1}p^1q^{n-1}$	$4\binom{n}{2}p^2q^{n-2}$		$n^2\binom{n}{n}p^nq^0$	$\sum_{k=0}^{n} k^2 \binom{n}{k} p^k q^{n-k}$

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} q^{n-k}$$

$$=\sum_{k=1}^{n}n\binom{n-1}{k-1}p^{k}q^{n-k}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k}$$

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k q^{n-k-1}$$

$$= np(q+p)^{n-1}$$

= np

$$Var(X) = E(X^{2}) - \mu^{2}$$

= $E(X(X-1) + X) - n^{2}p^{2}$
= $E(X(X-1)) + np - n^{2}p^{2}$
 $E(X(X-1)) = \sum_{k=0}^{n} k(k-1) \binom{n}{k} p^{k} q^{n-k}$
= $0\binom{n}{0}q^{n} + 0\binom{n}{1}pq^{n-1} + \sum_{k=2}^{n} k(k-1)\binom{n}{k}p^{k}q^{n-k}$
= $\sum_{k=2}^{n} n(n-1)\binom{n-2}{k-2}p^{k}q^{n-k}$
= $n(n-1)p^{2}\sum_{k=2}^{n} \binom{n-2}{k-2}p^{k-2}q^{n-k}$

$$E(X(X-1)) = n(n-1)p^{2} \sum_{k=0}^{n-2} {\binom{n-2}{k}} p^{k} q^{n-k-2}$$

$$= n(n-1)p^{2} (p+q)^{n-2}$$

$$= n(n-1)p^{2}$$

$$Var(X) = E(X(X-1)) + np - n^{2}p^{2}$$

$$= n(n-1)p^{2} + np - n^{2}p^{2}$$

$$= n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$$

$$= np - np^{2}$$

$$= np(1-p)$$

$$= npq$$

$$P < \frac{1}{2}$$
: distribution is positive skewed

$$p = \frac{1}{2}$$
: distribution is symmetric about x

 $p > \frac{1}{2}$: distribution is negative skewed

 $=\frac{1}{2}$

- e.g. (i) State whether a binomial distribution could be used in each of the following problems. If the binomial distribution is an acceptable model, define the random variable clearly and state its parameters.
- a) A fair cubical dice is rolled 10 times. Find the probability of getting three fours, four fives and three sixes.
 - Here we are interested in three different outcomes, not binomial
 - Note: if we wanted just the probability of three fours it would be binomial (or four fives, or three sixes)
- b) A fair coin is tossed until a head occurs. Find the probability that eight tosses are necessary.
- Here the number of tosses is unknown, binomial distribution requires a fixed number of events, <u>not binomial</u>
- *Note: the random variable here is the number of tosses as that is what is of interest.*

- c) A jar contains 49 balls numbered 1 to 49. Six of the balls are selected at random. Find the probability that four of the six have an even score.
- This depends upon whether the selections are made with, or without replacement.
- Without replacement, then the probability is not the same for each selection so it is not binomial
- With replacement, then it would be a binomial distribution. X= number of balls with an even score

$$X \sim Bin\left(6, \frac{24}{49}\right)$$
$$P(X = 4) = {\binom{6}{4}} {\left(\frac{25}{49}\right)^2} {\left(\frac{24}{49}\right)^4}$$
$$= \frac{{\binom{6}{4}} {25^2} {24^4}}{{49^6}} = 0.2247 \text{ (to 4 dp)}$$

(ii) In three trials of a binomial experiment, the probability of x successes is as follows;

x	<i>x</i> 0		2	3		
p(x)	0.343	0.441	0.189	0.027		

a) Find the probability of success at one trial

$$X \sim Bin(3,p) \qquad P(X = 3) = 0.027$$
$$\binom{3}{3}(1-p)^{0} p^{3} = 0.027$$
$$p^{3} = 0.027$$
$$p = 0.3$$

b) What is the variance of this distribution?

$$Var(X) = np(1-p)$$

= (3)(0.3)(0.7)
= 0.63

(iii) Classify each of the following distributions as positively skewed, negatively skewed or symmetric

(iv) X is random variable whose distribution is defined as $X \sim Bin\left(150, \frac{2}{5}\right)$

a) Find the mean and standard deviation of the distribution

$$\mu = np$$

$$= 150 \times \frac{2}{5}$$

$$= 60$$

$$\sigma^{2} = np(1-p)$$

$$= 150 \times \frac{2}{5} \times \frac{3}{5}$$

$$= 36$$

$$\sigma = 6$$

b) How many more trials would be needed to increase the mean to 100?

$$100 = n \times \frac{2}{5}$$
Another 100 trials would be required
$$n = 250$$

c) What effect does this have on the standard deviation and distribution?

$$\sigma^2 = 250 \times \frac{2}{5} \times \frac{3}{5} \quad \underline{\sigma} = 7.75 \text{ (to 2 dp)}$$

= 60

- (v) An experiment is devised where two dice are rolled ten times and the number of times the sum equals seven is noted.
- a) Find the mean and standard deviation of the distribution

Let X = the number of times the sum is seven

$$X \sim Bin\left(10,\frac{1}{6}\right) \qquad \mu = np \qquad \sigma^{2} = np(1-p) \\ = 10 \times \frac{1}{6} \qquad = 10 \times \frac{1}{6} \times \frac{5}{6} \\ = 1.67 \text{ (to 2 dp)} \qquad = 1.3889 \text{ (to 4 dp)} \\ \sigma = 1.18 \text{ (to 2 dp)}$$

b) The experiment is simulated 1000 times, and the results are in the table below.

x	0	1	2	3	4	5	6	7	8	9	10	Σ
f	193	298	287	151	51	17	2	1	0	0	0	1000
f_r	0.193	0.298	0.287	0.151	0.051	0.017	0.002	0.001	0	0	0	1
xf_r	0	0.298	0.574	0.453	0.204	0.085	0.012	0.007	0	0	0	1.633
$x^2 f_r$	0	0.298	1.148	1.359	0.816	0.425	0.072	0.049	0	0	0	4.167

c) Find the mean and standard deviation of this simulation

d) Draw both the simulation and experimental frequency polygons on the same set of axes

Exercise 17B; 1, 3, 4, 5, 6, 8, 10, 11,14, 15