Differential Equations Of The Form
y' =80

Differential equations of the form;

dy _
T g()

are easily separable and written in the form;

Note: they can also be considered as a first order linear DE

L) = £(x) , where £(x) = 0
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The Logistic Equation

The standard logistic equation is the solution of the first order
differential equation
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In this course we will restrict the logistic equation to ones of the form
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If we look at the slope field, we can see that there are three basic

curves, depending upon the value of a
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as well as two trivial solutions when a
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(1) Find any inflection points in the logistic curve
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possible inflection points occur when
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~ the only possible inflection point 1s when y = %



x = InB Exercise 13D; 1, 3b, Sc, 6bdf, 8,

9,11,12, 14, 16, 17, 18, 20, 21

the slope field shows that there 1s a change 1n concavity
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