Inverse Functions

If there exists a one-to-one relationship between the two sets, then both the relation and the inverse relation are functions.
In this situation the inverse relation is called the inverse function.
A function is either one-to-one or many-to-one.
If the function is one-to-one, then the composite function of a function and its inverse is always x

$$
\text { i.e. } f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x
$$

Testing For Inverse Functions

(1) Use a horizontal line test

OR
(2) When $x=f(y)$ is rewritten as $y=g(x), y=g(x)$ is unique.

The inverse function of an odd function will always be odd Even functions do not have inverse functions

Domain and Range

If (a, b) is a point on $y=f(x)$, then (b, a) is a point on $y=f^{-1}(x)$
thus
The domain of $y=f(x)$ is the range of $y=f^{-1}(x)$
The range of $y=f(x)$ is the domain of $y=f^{-1}(x)$
e.g. $y=e^{x}$

Domain: all real x
Range: $y>0$
$f^{-1}: x=e^{y}$
$\therefore y=\log x$
Domain: $x>0$
Range: all real y

Restricting the domain so that the function is one-to-one

A function can be made invertible by restricting the domain so that the function becomes one-to-one.

The domain should be chosen so that the piece of the graph is continually increasing or decreasing.
e.g. $y=x^{2}$

Domain: all real x
Range: $y \geq 0$
NO INVERSE
Restricted Domain: $x \geq 0$
Range: $y \geq 0$

$f^{-1}: x=y^{2}$
$\therefore y=x^{\frac{1}{2}}$
Domain: $x \geq 0$
Range: $y \geq 0$
(iv) 2010 HSC Question 3b)

Let $f(x)=e^{-x^{2}}$. The diagram shows the graph of $y=f(x)$

a) The graph has two points of inflection. Find the x coordinates of these points.

Possible inflection points occur when $f^{\prime \prime}(x)=0$

$$
f(x)=e^{-x^{2}}
$$

$$
f^{\prime}(x)=-2 x e^{-x^{2}}
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
e^{-x^{2}} & =0
\end{aligned}
$$

$$
f^{\prime \prime}(x)=(-2 x)\left(-2 x e^{-x^{2}}\right)+\left(e^{-x^{2}}\right)(-2)
$$

$$
4 x^{2}-2=0
$$

$$
=\left(4 x^{2}-2\right) e^{-x^{2}}
$$

$$
x= \pm \frac{1}{\sqrt{2}}
$$

b) Explain why the domain of $f(x)$ must be restricted if $f(x)$ is to have an inverse function.

In order to have an inverse function there must exist a one-to-one relationship between the domain and range. i.e. every value in the domain gives a unique value in the range.
c) Find a formula for $f^{-1}(x)$ if the domain of $f(x)$ is restricted to $x \geq 0$

$$
\begin{aligned}
x & =e^{-y^{2}} \\
-y^{2} & =\ln x \\
y^{2} & =-\ln x \\
& =\ln \left(\frac{1}{x}\right) \\
y & = \pm \sqrt{\ln \left(\frac{1}{x}\right)}
\end{aligned}
$$

However the domain of the original function becomes the range of the inverse function.

$$
\begin{gathered}
\text { i.e. } y \geq 0 \\
y=\sqrt{\ln \left(\frac{1}{x}\right)}
\end{gathered}
$$

d) State the domain of $f^{-1}(x)$

The range of the original function becomes the domain of the inverse function.

$$
\therefore 0<x \leq 1
$$

e) Sketch the curve $y=f^{-1}(x)$

Exercise 17A; 1, 3c, 4, 5bc, 6, 8, 9, 10, $11,13,15,16,18,20$

