Solving LHS > RHS

An efficient way of solving LHS > RHS 1s to rewrite the inequation as
LHS —RHS >0

This 1s because finding when functions are positive (or negative) can
be discovered by investigating the critical points of their domain.

A function can only change sign at;
e an x-intercept OR
 a discontinuity in the domain

Bracket Interval Notation

[ : interval endpoint is included

( : interval endpoint 1s not inculded
[a,b]: closed - all endpoints are included
(a,b): open — no endpoints are included

unbounded: if an interval extends to infinity in either direction



e.g. (i)x>5 (ii) x<6
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(2,4]={x:2<x<4} [23JU(45)={x:2 < x < 3}U{x: 4<x<5}



Composite Functions

When two or more functions combine to create a new function.

J(g(x)) = fog(x)  (substitute g(x) into f(x))

e.g. f(x):42_xx andg(x):%
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Exercise 3A; 4, Sbc, 6ace,

Tacef, 8b, 9a, 10b, 12ac,
13bd, 14,17, 19
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S.x<-=3 or .X>—?
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