Unit Vectors Components

A unit vector is a vector with magnitude equal to one.

Every non-zero vector has a corresponding unit vector with the same direction

$$\stackrel{\wedge}{\underset{\sim}{a}} = \frac{a}{|\overrightarrow{a}|}$$
 and $|\stackrel{\wedge}{\underset{\sim}{a}}| = 1$

Two Special Unit Vectors

All vectors can be rewritten in terms of components, two special unit vectors that are perpendicular.

For convenience we will define them to be horizontal and vertical

$$\overrightarrow{OJ} = j$$

$$\overrightarrow{O}$$

$$\overrightarrow{OI} = i$$

$$I$$

Component Form of a Position Vector

$$|\underline{u}| = \sqrt{x^2 + y^2}$$
 direction $= \theta$
 $= \tan^{-1} \frac{y}{x}$

Equal Vectors

Equal vectors have the same magnitude and direction

To calculate the equivalent position vector of any displacement vector *head minus tail*

$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \overrightarrow{OP} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \stackrel{\wedge}{\underset{\sim}{OP}} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \stackrel{\wedge}{\underset{\sim}{DP}} = \frac{1}{5} p$$
$$\overrightarrow{CD} = \begin{pmatrix} -1 \\ 5 \end{pmatrix} - \begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \stackrel{p}{\underset{\sim}{DP}} = 3i + 4j \qquad = \frac{3}{5} i + \begin{pmatrix} 4 \\ 5 \end{pmatrix} j$$

Exercise 8B; 1 to 4, 5ac, 6cd, 7a, 8 to 10, 11ab, 12ac, 13 to 18