
Concavity
( ) up concave is curve  the,0 If >′′ xf

235sketch  derivative second at the lookingBy  e.g. 23 +++= xxxy

( ) down concave is curve  the,0 If <′′ xf
( ) inflection ofpoint  possible ,0 If =′′ xf
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The second deriviative measures the change in slope with respect to x, 
this is known as concavity

1062

2

+= x
dx

yd

0 whenup concave is Curve 2

2

>
dx

yd

3
5

0106 i.e.

−>

>+

x

x

y

x
3
5

−



Turning Points
All turning points are stationary points.

( ) point  turningminimum ,0 If >′′ xf
( ) point  turningmaximum ,0 If <′′ xf
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Inflection Points
A point of inflection is where there is a change in concavity, to see if 
there is a change, check either side of the point.
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Alternative Way of Finding 
Inflection Points
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If the first non-zero derivative is of odd order,

i.e 0 or 0 or 0 etc

then it is a point of inflection
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If the first non-zero derivative is of even order,

i.e 0 or 0 or 0 etc

then it is not a point of inflection
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Exercise 4E; 1, 2bc, 3bd, 4a, 6,
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Inflection Points

xx = a

y = mx + b
y = f(x)

a function inflects through its tangent 
at that point

let’s investigate a new function
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Now

i.e. x = a is a root of g(x)



i.e. x = a is also a stationary point of g(x)

we also know that x = a is an inflection point of f(x)

0

x

< 0 > 0

there is a change in concavity

x = a is a horizontal point of inflection of g(x)



All differentiable functions can be represented by a Taylor series 
(polynomial of infinite order)

If x = a is a horizontal point of inflection of g(x) at this root, then 
g(x) can be represented by a Taylor series with a factor;

(x = a  is an odd-ordered root)

otherwise it would be a root of order greater than 2k + 1

i.e. the first non-zero derivative is the same order as the root
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i.e. if x = a is an inflection point of f(x), then the first non-zero 
derivative is

a derivative of odd order
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