
 $$
y=f(x)
$$
 $$
A(x)=\pi[f(x)]^{2}
$$
 $$
\Delta V=\pi[f(x)]^{2} \cdot \Delta x
$$
 $$
V=\lim _{\Delta x \rightarrow 0} \sum_{x=a}^{b} \pi[f(x)]^{2} \cdot \Delta x
$$
 $$
=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Volume of a solid of revolution about; (i)x axis : $V=\pi \int_{a}^{b} y^{2} d x$
(ii) y axis : $V=\pi \int_{c}^{d} x^{2} d y$

e.g. (i) cone

$$
\begin{aligned}
& V=\pi \int_{0} y^{2} d x \\
&=\pi \int_{0}^{h} m^{2} x^{2} d x \\
&=\pi m^{2}\left[\frac{1}{3} x^{3}\right]_{0}^{h} \\
&=\frac{1}{3} \pi m^{2}\left(h^{3}-0\right) \\
&=\frac{1}{3} \pi m^{2} h^{3} \\
&=\frac{1}{3} \pi\left(\frac{r}{h}\right)^{2} h^{3} \\
&=\frac{\pi r^{2} h^{3}}{3 h^{2}} \\
&=\frac{\pi r^{2} h}{3} \\
&
\end{aligned}
$$

(ii) sphere

$$
\begin{aligned}
& V=\pi \int y^{2} d x \\
&=2 \pi \int_{0}^{r}\left(r^{2}-x^{2}\right) d x \\
&=2 \pi\left[r^{2} x-\frac{1}{3} x^{3}\right]_{0}^{r} \\
&=2 \pi\left\{\left(r^{2}(r)-\frac{1}{3} r^{3}\right)-0\right\} \\
&=2 \pi\left(\frac{2}{3} r^{3}\right) \\
&=\frac{4}{3} \pi r^{3} \\
& \hline
\end{aligned}
$$

(iii) Find the volume of the solid generated when $y=x^{2}$ is revolved around the y axis between $y=0$ and $y=1$.

(iv) Find the volume of the solid when the shaded region is rotated

$$
\text { OR } \begin{aligned}
V & =\pi r^{2} h-\frac{1}{3} \pi r^{2} h \\
& =25 \pi\left\{1-\frac{1}{3}(1)^{3}-0\right\} \\
& =\frac{2}{3} \pi(5)^{2}(1)=\frac{50 \pi}{3} \text { unit }^{3} \\
& =\frac{50 \pi}{3} \text { units }^{3}
\end{aligned}
$$

2005 Advanced HSC Question 6c $)^{1 / 4}$

The graphs of the curves $y=x^{2}$ and $y=12-2 x^{2}$ are shown in the diagram.
(i) Find the points of intersection of the two curves.

$$
\begin{aligned}
x^{2} & =12-2 x^{2} \\
3 x^{2} & =12 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

\therefore meet at $(2,4)$
(ii) The shaded region between the two curves and the y axis is rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.

$$
\begin{aligned}
& V=\pi \int^{2} d y \\
V= & \pi \int_{0}^{4} y d y+\pi \int_{4}^{12}\left(6-\frac{1}{2} y\right) d y \\
= & \pi\left[\frac{y^{2}}{2}\right]_{0}^{4}-\pi\left[6 y-\frac{y^{2}}{4}\right]_{12}^{4} \\
= & \pi\left\{\frac{(4)^{2}}{2}-6(4)+\frac{(4)^{2}}{4}\right\}-\pi \frac{(0)^{2}}{2}+\pi\left\{6(12)-\frac{(12)^{2}}{4}\right\} \\
= & 24 \pi \text { units }^{2}
\end{aligned}
$$

2022 Extension 1 HSC Question 13b)

A solid of revolution is to be found by rotating the region bounded by the x-axis and the curve $y=(k+1) \sin (k x)$, where $k>0$, between $x=0$ and $x=\frac{\pi}{2 k}$ about the x-axis

Find the value of k for which the volume is π^{2}

$$
V=\pi \int_{0}^{\frac{\pi}{2 k}}(k+1)^{2} \sin ^{2}(k x) d x
$$

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{2 k}}(k+1)^{2} \sin ^{2}(k x) d x \\
& =\frac{\pi(k+1)^{2}}{2} \int_{0}^{\frac{\pi}{2 k}}(1-\cos 2 k x) d x \\
& =\left(\pi(k+1)^{2}\right)\left[x-\frac{1}{2 k} \sin 2 k x\right]_{0}^{\frac{\pi}{2 k}} \\
& =\left(\pi(k+1)^{2}\right)\left(\frac{\pi}{2 k}-0-0+0\right) \\
& =\frac{\pi^{2}(k+1)^{2}}{4 k}
\end{aligned}
$$

$$
\begin{aligned}
V & =\pi^{2} \\
\frac{\pi^{2}(k+1)^{2}}{4 k} & =\pi^{2} \\
(k+1)^{2} & =4 k \\
k^{2}+2 k+1 & =4 k \\
k^{2}-4 k+1 & =0 \\
(k-1)^{2} & =0 \\
k & =1
\end{aligned}
$$

Exercise 12F; 3bdef, 4eg, 6, 9, 10cd, 11d, 13, 14, 16ad, 18, 20, 21, 23, 24, 25

