Inverse Relations

The inverse relation returns the set of dependent values to the set of independent values

\mathbf{A} and \mathbf{C} are equal sets
The inverse relationship can be found by swapping the variables relation: $y=x^{2}$ inverse relation: $x=y^{2} \Rightarrow y= \pm \sqrt{x}$

The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line $y=x$.
e.g. Draw the inverse relation

Inverse Functions

If there exists a one-to-one relationship between the two sets, then both the relation and the inverse relation are functions.
In this situation the inverse relation is called the inverse function.

Testing For Inverse Functions

(1) The graph satisfies both the vertical and horizontal line tests OR
(2) When $x=f(y)$ is rewritten as $y=g(x), y=g(x)$ is unique.
(i) $y=x^{2}$

Only has an inverse relation
OR $\begin{aligned} & x=y^{2} \\ & y= \pm \sqrt{x}\end{aligned} \quad$ NOT UNIQUE
(ii) $y=x^{3}$

Has an inverse function
$\boldsymbol{O R}^{\quad x=y^{3}}$
$y=\sqrt[3]{x}$
UNIQUE

Exercise 5F; 1bdeg, 2, 3, 4bdf, 5bdf, 6ab (i,iv), 7bd, 8ab (i,iii), 9bd, 11, 12, 14, 15

