Slope Fields

The slope field, (direction field, gradient field), of a differential equation $\frac{d y}{d x}=f(x, y)$ assigns to each point $P(x, y)$ in the plane the number $f(x, y)$, which is the gradient of the solution curve through P. creating a slope field e.g. (i) $\frac{d y}{d x}=-\frac{y}{x}$

1. calculate the slope for each point in the grid
2. at each point draw a short interval of that slope

\boldsymbol{x}	$\mathbf{- 5}$	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
5	1	$\frac{5}{4}$	$\frac{5}{3}$	$\frac{5}{2}$	5	$*$	-5	$\frac{-5}{2}$	$\frac{-5}{3}$	$\frac{-5}{4}$	-1
4	$\frac{4}{5}$	1	$\frac{4}{3}$	2	4	$*$	-4	-2	$\frac{-4}{3}$	-1	$\frac{-4}{5}$
3	$\frac{3}{5}$	$\frac{3}{4}$	1	$\frac{3}{2}$	3	$*$	-3	$\frac{-3}{2}$	-1	$\frac{-3}{4}$	$\frac{-3}{5}$
2	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{2}{3}$	1	2	$*$	-2	-1	$\frac{-2}{3}$	$\frac{-1}{2}$	$\frac{-2}{5}$
1	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	1	$*$	-1	$\frac{-1}{2}$	$\frac{-1}{3}$	$\frac{-1}{4}$	$\frac{-1}{5}$
0	0	0	0	0	0	$*$	0	0	0	0	0
-1	$\frac{-1}{5}$	$\frac{-1}{4}$	$\frac{-1}{3}$	$\frac{-1}{2}$	-1	$*$	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$
-2	$\frac{-2}{5}$	$\frac{-1}{2}$	$\frac{-2}{3}$	-1	-2	$*$	2	1	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{2}{5}$
-3	$\frac{-3}{5}$	$\frac{-3}{4}$	-1	$\frac{-3}{2}$	-3	$*$	3	$\frac{3}{2}$	1	$\frac{3}{4}$	$\frac{3}{5}$
-4	$\frac{-4}{5}$	-1	$\frac{-4}{3}$	-2	-4	$*$	4	2	$\frac{4}{3}$	1	$\frac{4}{5}$
-5	-1	$\frac{-5}{4}$	$\frac{-5}{3}$	$\frac{-5}{2}$	-5	$*$	5	$\frac{5}{2}$	$\frac{5}{3}$	$\frac{5}{4}$	1

The slope field would suggest that the general solution is a series of hyperbolas $y=\frac{c}{x}$

The slope field would suggest that the general solution is a series of hyperbolas $y=\frac{c}{x}$

The slope field would suggest that the general solution is a series of hyperbolas $y=\frac{c}{x}$

The particular solution that solves the initial value problem of $y(2)=2$ would be

$$
y=\frac{4}{x}
$$

(ii) $\frac{d y}{d x}=-\frac{x}{y}$

(ii) $\frac{d y}{d x}=-\frac{x}{y}$

(iii) $\frac{d y}{d x}=-\frac{1}{x^{3}}$
if $\frac{d y}{d x}=f(x)$ the slopes appear to be in columns of equal slopes

(iii) $\frac{d y}{d x}=-\frac{1}{x^{3}}$
if $\frac{d y}{d x}=f(x)$ the slopes appear to be in columns of equal slopes
continual horizontal/vertical
lines imply asymptotes

(iv) $\frac{d y}{d x}=1-y$
if $\frac{d y}{d x}=f(y)$
the slopes appear to be in rows of equal slopes

(iv) $\frac{d y}{d x}=1-y$
if $\frac{d y}{d x}=f(y)$
the slopes appear to be in rows of equal slopes

(v) The trajectories of particles in a fluid are described by the differential equation

$$
\frac{d y}{d x}=\frac{1}{4}(y-2)(y-x)
$$

The slope field for the differential equation is shown below

a) Identify any solutions of the form $y=k$, where k is a constant

$$
y=2
$$

b) Draw a sketch of the trajectory of a particle in the fluid which passes through the point $(-3,1)$ and describe the trajectory as $x \rightarrow \pm \infty$

as $x \rightarrow \pm \infty, y \rightarrow 2$ from underneath the asymptote
Exercise 13B; 1ef, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16

