Vector Equation of a Circle

$$
\left|\underset{\sim}{v}-{\underset{\sim}{v}}_{v}\right|=r
$$

Is the vector equation of a circle in 2 D with; centre: ${\underset{\sim}{v}}_{0}$
radius $=r$ units

$$
\begin{aligned}
& \left\lvert\, \begin{array}{c}
\left(x-x_{0}\right) i \underset{\sim}{i}+\left(y-y_{0}\right) j \mid=r \\
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} \\
\cos ^{2} \theta+\sin ^{2} \theta=1
\end{array}\right. \text { cartesian equation of a circle } \\
& \qquad \text {. }
\end{aligned}
$$

$$
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=r^{2}
$$

$$
\text { let } \begin{aligned}
&\left(x-x_{0}\right)=r \cos \theta \Rightarrow x=x_{0}+r \cos \theta \\
&\left(y-y_{0}\right)=r \sin \theta \Rightarrow y=y_{0}+r \sin \theta
\end{aligned}
$$

$$
\binom{x}{y}=\binom{x_{0}}{y_{0}}+\binom{r \cos \theta}{r \sin \theta}
$$

e.g. Show that $(\underset{\sim}{r}-2 \underset{\sim}{i}+\underset{\sim}{j} \underset{\sim}{j}) \cdot(\underset{\sim}{r}-2 \underset{\sim}{i}+\underset{\sim}{j} \underset{\sim}{j})=12$ represents a circle and find its centre and radius

$$
\begin{aligned}
& (\underset{\sim}{r}-2 \underset{\sim}{i}+3 \underset{\sim}{j}) \cdot(\underset{\sim}{r}-2 \underset{\sim}{i}+3 \underset{\sim}{j})=12 \\
& |\underset{\sim}{r}-2 \underset{\sim}{i}+\underset{\sim}{i} \underset{\sim}{j}|^{2}=12 \\
& |\underset{\sim}{r}-2 \underset{\sim}{i}+3 \underset{\sim}{j}|=2 \sqrt{3}
\end{aligned}
$$

which represents a circle, centre $(2,-3)$ and radius $2 \sqrt{3}$ units
(ii) a) Find a vector equation of the tangent to $x^{2}+y^{2}=25$ at the point $(3,4)$

$$
\begin{gathered}
\overrightarrow{P R}=(\underset{\sim}{r}-3 \underset{\sim}{i}-4 \underset{\sim}{j}) \\
\overrightarrow{O P}=3 \underset{\sim}{i}+4 \underset{\sim}{j} \\
\overrightarrow{P R} \cdot \overrightarrow{O P}=0 \quad \text { (radius } \perp \text { tangent) } \\
(\underset{\sim}{r}-3 \underset{\sim}{i}-4 \underset{\sim}{j}) \cdot(\underset{\sim}{i}+\underset{\sim}{i})=0
\end{gathered}
$$

b) Find the Cartesian equation of the tangent

$$
\begin{aligned}
& ((x-3) \underset{\sim}{i}+(y-4) j) \cdot(3 \underset{\sim}{i}+\underset{\sim}{j})=0 \\
& 3(x-3)+4(y-4)=0 \\
& 3 x-9+4 y-16=0 \\
& 3 x+4 y-25=0
\end{aligned}
$$

Vector Equation of a Sphere

$$
\left|\underset{\sim}{v}-{\underset{\sim}{v}}_{0}\right|=r
$$

Is the vector equation of a sphere in 3D with; centre: ${\underset{\sim}{v}}_{0}$
radius $=r$ units

$$
\left(x-x_{0}\right) \underset{\sim}{i}+\left(y-y_{0}\right) j+\left(z-z_{0}\right) k \underset{\sim}{\sim} \mid=r
$$

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}
$$

cartesian equation of a sphere

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+\left(\begin{array}{c}
r \cos \theta \cos \varphi \\
r \cos \theta \sin \varphi \\
r \sin \theta
\end{array}\right)
$$

parametric equation of a sphere
e.g. The spheres with equations $(x+2)^{2}+(y+3)^{2}+(z-4)^{2}=16$ and $(x+2)^{2}+(y+3)^{2}+(z+2)^{2}=25$ intersect at a circle.
a) Upon which plane does the circle lie?

$$
\begin{aligned}
(x+2)^{2}+(y+3)^{2}+(z-4)^{2} & =16 \\
(x+2)^{2}+(y+3)^{2}+(z+2)^{2} & =25 \\
\hline(z+2)^{2}-(z-4)^{2} & =9 \\
z^{2}+4 z+4-z^{2}+8 z-16 & =9 \\
12 z & =21 \\
z & =\frac{7}{4}
\end{aligned}
$$

the two spheres intersect on the plane $z=\frac{7}{4}$
b) Find the centre and radius of the intersecting circle

$$
\begin{aligned}
(x+2)^{2}+(y+3)^{2}+\left(\frac{7}{4}-4\right)^{2} & =16 \\
(x+2)^{2}+(y+3)^{2}+\frac{81}{16} & =16 \\
(x+2)^{2}+(y+3)^{2} & =\frac{175}{16}
\end{aligned}
$$

circle has centre $\left(-2,-3, \frac{7}{4}\right)$ and radius $=\frac{5 \sqrt{7}}{4}$ units
(ii) Find the intersection points of the sphere $|\underset{\sim}{r}-\underset{\sim}{i}-\underset{\sim}{j}|=4$ and the line $\underset{\sim}{r}=\underset{\sim}{i}+2 \underset{\sim}{j}+3 \underset{\sim}{k}+\lambda(\underset{\sim}{i}-2 \underset{\sim}{x})$

$$
\begin{aligned}
|\underset{\sim}{i}+2 \underset{\sim}{j}+3 \underset{\sim}{k}+\lambda(\underset{\sim}{i}-2 \underset{\sim}{k})-\underset{\sim}{i}-4 \underset{\sim}{j}| & =4 \\
|\lambda \underset{\sim}{i}-2 \underset{\sim}{j}+(3-2 \lambda) \underset{\sim}{k}| & =4
\end{aligned}
$$

$$
\lambda^{2}+4+9-12 \lambda+4 \lambda^{2}=16
$$

$$
5 \lambda^{2}-12 \lambda-3=0
$$

$$
\lambda=\frac{12 \pm \sqrt{204}}{10}
$$

$$
x=1+\frac{6 \pm \sqrt{51}}{5}
$$

$$
=\frac{6 \pm \sqrt{51}}{5}
$$

$$
y=2
$$

$$
z=3-\frac{12 \pm 2 \sqrt{51}}{5}
$$

pts of intersection are $\left(\frac{11+\sqrt{51}}{5}, 2, \frac{3-2 \sqrt{51}}{5}\right)$ and $\left(\frac{11-\sqrt{51}}{5}, 2, \frac{3+2 \sqrt{51}}{5}\right)$
(iii) Let $\underset{\sim}{v}$ be the position vector of a point P on a sphere S with centre C and radius r, so that $|\underset{\sim}{v}-\underset{\sim}{c}|=r$, where $\underset{\sim}{c}=\overrightarrow{O C}$ Do NOT prove this)
a) The equation of the line l through P in the direction of the vector $\underset{\sim}{m}$ $\underset{\sim}{w}=\underset{\sim}{v}+\lambda \underset{\sim}{m}$

Find the values of λ that correspond to the intersection of the line l and the sphere S. Give your answer in terms of $\underset{\sim}{v}, \underset{\sim}{c}$ and $\underset{\sim}{m}$

$$
\begin{aligned}
|\underset{\sim}{w}-\underset{\sim}{c}| & =r \\
\underset{\sim}{v}+\lambda \underset{\sim}{c}-\underset{\sim}{c} \mid & =r
\end{aligned}
$$

$$
\begin{gathered}
{[(\underset{\sim}{v}-\underset{\sim}{c})+\lambda \underset{\sim}{m}] \cdot[(\underset{\sim}{v}-\underset{\sim}{c})+\lambda \underset{\sim}{m}]=r^{2}} \\
(\underset{\sim}{v}-\underset{\sim}{c}) \cdot(\underset{\sim}{v}-\underset{\sim}{c})+2 \lambda(\underset{\sim}{v}-\underset{\sim}{c}) \cdot \underset{\sim}{m}+\lambda^{2} \underset{\sim}{m} \cdot \underset{\sim}{m}=r^{2} \\
|\underset{\sim}{v}-\underset{\sim}{c}|^{2}+2 \lambda(\underset{\sim}{v}-\underset{\sim}{c}) \cdot \underset{\sim}{m}+\lambda^{2}|\underset{\sim}{m}|^{2}=r^{2} \\
r^{2}+2 \lambda(\underset{\sim}{v}-\underset{\sim}{c}) \cdot{\underset{\sim}{\sim}}^{m}+\lambda^{2}|\underset{\sim}{m}|^{2}=r^{2}
\end{gathered}
$$

$$
\begin{aligned}
& 2 \lambda(\underset{\sim}{v}-\underset{\sim}{c}) \cdot \underset{\sim}{m}+\lambda^{2}|\underset{\sim}{m}|^{2}=0 \\
& \lambda\left[2(\underset{\sim}{v}-\underset{\sim}{c}) \cdot \underset{\sim}{m}+\lambda|\underset{\sim}{m}|^{2}\right]=0 \\
& \lambda=0 \text { or } \lambda=\frac{2 m \cdot(c-v)}{\left.|m|_{\sim}^{c}\right|^{2}}
\end{aligned}
$$

b) Deduce that the line l is tangent to the sphere S if and only if $\underset{\sim}{m} \cdot(\underset{\sim}{v}-\underset{\sim}{c})=0$. Interpret this result geometrically

If l is a tangent, then there is only one point of intersection

$$
\begin{aligned}
& \text { i.e. } \underset{\sim}{w}=\underset{\sim}{v} \\
& \begin{aligned}
\underset{\sim}{v}+\lambda \underset{\sim}{\sim} & =\underset{\sim}{v} \\
\lambda & =\widetilde{0}
\end{aligned} \\
& \frac{-2 m \cdot(c-v)}{|\underset{\sim}{m}|^{2}}=0 \\
& \underset{\sim}{m} \cdot(\underset{\sim}{v}-\underset{\sim}{c})=0
\end{aligned}
$$

If the dot product equals
zero then the tangent must
be perpendicular to the radius.

Other Common Graphs in 3D

$$
a x+b y+c z=d
$$

plane
$z=x^{2}+y^{2}$
 in the z direction
$z=\sqrt{r^{2}-x^{2}-y^{2}}$

hemisphere, with base on $x y$ plane

$$
z=a \sqrt{x^{2}+y^{2}}
$$

cone, opening ${ }^{+}$in
the z direction

$$
x^{2}+y^{2}-z^{2}=d
$$

$$
x^{2}-y^{2}-z^{2}=d
$$

hyperboloid of one sheet
hyperboloid of two sheets

Exercise 5G; 1, 2, 4, 5b, 7, 8, 9, 10, $11,13,14,15,17 \mathrm{a}, 18$

