Differential Equations In the

e.g. Real World
(i) A tank contains 30 litres of a solution of a chemical in water.

The concentration of the chemical is reduced by running pure water into the tank at a rate 1 litre per minute and allowing the solution to run out of the tank at a rate of 2 litres per minute.

The tank contains x litres of the chemical at time t minutes after the dilution starts.
a) Show that $\frac{d x}{d t}=-\frac{2 x}{30-t}$

Every minute the volume of the tank reduces by 1 litre, thus in t minutes the volume will be $(30-t)$ litres

At time t, the fraction of the solution that is chemical is

$$
\frac{x}{30-t}
$$

The solution is
escaping at 2 litres per minute, so the rate of flow of chemical out of the tank is

$$
\frac{d x}{d t}=-\frac{2 x}{30-t}
$$

b) Find the fraction of the original chemical still in the tank after 20 minutes

Let the original volume of chemical be V

$$
\begin{array}{rlrl}
\frac{d x}{d t} & =-\frac{2 x}{30-t} & \text { when } t=20 ; \quad x=\frac{V(30-20)^{2}}{900} \\
\int_{V}^{x} \frac{d x}{2 x} & =\int_{0}^{t} \frac{-d t}{30-t} & & =\frac{V}{9} \\
\frac{1}{2}[\ln |x|]_{V}^{x} & =[\ln |30-t|]_{0}^{t} & & \therefore \text { after } 20 \text { minutes } \frac{1}{9} \text { of the } \\
\ln \left|\frac{x}{V}\right| & =2 \ln \left|\frac{30-t}{30}\right| & & \text { original chemical is left } \\
\frac{x}{V} & =\frac{(30-t)^{2}}{900} & \\
x & =\frac{V(30-t)^{2}}{900} &
\end{array}
$$

(ii) The population of foxes on an island is modelled by the logistic equation $\frac{d y}{d t}=y(1-y)$, where y is the fraction of the island's carrying capacity after t years.

At time $t=0$, the population of foxes is estimated to be one-quarter of the island's carrying capacity.
a) Use the substitution $y=\frac{1}{1-w}$ to transform the logistic equation to

$$
\begin{aligned}
\frac{d w}{d t} & =-w & \frac{d y}{d t} & =y(1-y) \\
y & =\frac{1}{1-w} & \frac{1}{(1-w)^{2}} \frac{d w}{d t} & =\frac{1}{1-w}\left(1-\frac{1}{1-w}\right) \\
\frac{d y}{d t} & =\frac{1}{(1-w)^{2}} \times \frac{d w}{d t} & \frac{d w}{d t} & =\frac{1}{1-w}\left(-\frac{w}{1-w}\right)(1-w)^{2} \\
& & & =-w
\end{aligned}
$$

b) Using the solution of $\frac{d w}{d t}=-w$ find the solution of the logistic equation for y satisfying the initial conditions.

$$
\begin{aligned}
\frac{d w}{d t} & =-w & \text { when } t & =0, y=\frac{1}{4} ; \\
w & =-3 e^{-t} & \frac{1}{4} & =\frac{1}{1-w} \\
y & =\frac{1}{1+3 e^{-t}} & w & =-3
\end{aligned}
$$

c) How long will it take for the fox population to reach three-quarters of the island's carrying capacity?

$$
\begin{array}{rlrl}
\frac{3}{4} & =\frac{1}{1+3 e^{-t}} & 3 e^{-t} & =\frac{1}{3} \\
1+3 e^{-t}=\frac{4}{3} & e^{t} & =9 \\
t & =\ln 9=2.19722 \ldots
\end{array}
$$

\therefore It will take 2.2 years for the population to reach three-quarters capacity
(iii)A rumour is spreading amongst the 1000 students in a school at a rate proportional to those at have heard it, x, and those who have not heard it, $1000-x$. As time progresses people care less about the rumour, i.e. the proportion rate is not constant.

The rate the rumour spreads is modelled by the logistic equation

$$
\frac{d x}{d t}=\frac{K x(1000-x)}{t+1}
$$

If initially one student starts spreading the rumour, and after 1 hour 50 students have already heard the rumour, how many students have heard the rumour after 3 hours?

$$
\frac{d x}{d t}=\frac{K x(1000-x)}{t+1}
$$

$$
\left.\begin{array}{c}
\int_{1}^{50} \frac{d x}{x(1000-x)}=K \int_{0}^{1} \frac{d t}{1+t} \\
\frac{1}{1000} \int_{1}^{50}\left(\frac{1}{x}+\frac{1}{1000-x}\right) d x
\end{array}=K[\ln (1+t)]\right]_{0}^{1} .
$$

$$
\begin{aligned}
& {\left[\ln \left(\frac{x}{1000-x}\right)\right]_{1}^{50} }=1000 K \ln 2 \\
& \ln \left(\frac{1}{19} \times \frac{999}{1}\right)=1000 K \ln 2 \\
&=\frac{\ln \left(\frac{999}{19}\right)}{1000 \ln 2} \\
& \int_{1}^{x} \frac{d x}{x(1000-x)}=K \int_{0}^{3} \frac{d t}{1+t} \\
& {\left[\ln \left(\frac{x}{1000-x}\right)\right]_{1}^{x}=} 1000 K[\ln (1+t)]_{0}^{3} \\
& \ln \left(\frac{999 x}{1000-x}\right)=C \quad C=1000 \times \frac{\ln \left(\frac{999}{19}\right)}{1000 \ln 2} \times(\ln 4) \\
&=2 \ln \left(\frac{999}{19}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{999 x}{1000-x} & =e^{C} \\
999 x & =e^{C}(1000-x) \\
x\left(999+e^{C}\right) & =1000 e^{C} \\
x & =\frac{1000 e^{C}}{999+e^{C}} \\
& =734.558 \ldots
\end{aligned}
$$

$\therefore 734$ students have heard the rumour after 3 hours

Exercise 13E; 2, 4, 5, 6, 7, 11, 12, 13, 15, 16, 20

