Rates of Change

In some cases two, or more, rates must be found to get the equation in terms of the given variable.

$$
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

e.g. (i) A block of ice in the form of a cube has one edge 10 cm long. It is melting so that its dimensions decrease at the rate of $1 \mathrm{~mm} / \mathrm{s}$.

At what rate is the volume decreasing when the edge is 5 cm long?

$$
\begin{aligned}
\frac{d V}{d t} & =? \quad \frac{d x}{d t}=-\frac{1}{10} \\
\frac{d V}{d t} & =\frac{d x}{d t} \times \frac{d V}{d x} \\
& =3 x^{2} \times-\frac{1}{10}
\end{aligned}
$$

$$
=-\frac{3 x^{2}}{10}
$$

$$
\begin{aligned}
V & =x^{3} \\
\frac{d V}{d x} & =3 x^{2}
\end{aligned}
$$

when $x=5, \begin{aligned} \frac{d V}{d t} & =-\frac{3(5)^{2}}{10} \\ & =-7.5\end{aligned}$ \therefore volume is decreasing at $7.5 \mathrm{~cm}^{3} / \mathrm{s}$
(ii) A vessel is in the form of an inverted cone with a vertical angle of 90° If the depth of the water in the vessel is $x \mathrm{~cm}$;
a) find the volume of water.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
&=\frac{1}{3} \pi x^{2} x \\
&=\frac{1}{3} \pi x^{3} \\
& \hline
\end{aligned}
$$

b) If water is poured in at a rate of $0.2 \mathrm{~cm}^{3} / \mathrm{min}$, find the rate the depth is increasing when the water depth is 4 cm .

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{d V}{d t} \times \frac{d x}{d V} \\
& =\frac{1}{5} \times \frac{1}{\pi x^{2}} \\
& =\frac{1}{5 \pi x^{2}}
\end{aligned}
$$

$$
\text { when } \begin{aligned}
x=4, \frac{d x}{d t} & =\frac{1}{5 \pi(4)^{2}} \\
& =\frac{1}{80 \pi}
\end{aligned}
$$

\therefore depth is increasing

$$
\text { at } \frac{1}{80 \pi} \mathrm{~cm} / \mathrm{min}
$$

(iii) A spherical bubble is expanding so that its volume increases at a constant rate of $70 \mathrm{~mm}^{3} / \mathrm{s}$
What is the rate of increase of its surface area when the radius is 10 mm ?

$$
\begin{array}{rlrl}
\frac{d S}{d t} & =? & \frac{d V}{d t}=70 & V
\end{array}=\frac{4}{3} \pi r^{3} \quad S=4 \pi r^{2} .
$$

$$
=(70)(8 \pi r)\left(\frac{1}{4 \pi r^{2}}\right) \quad \therefore \text { when radius is } 10 \mathrm{~mm} \text { the surface area is } ~\left(\begin{array}{l}
\text { increasing at a rate of } 14 \mathrm{~mm}^{2} / \mathrm{s}
\end{array}\right.
$$

$$
=\frac{140}{r}
$$

Exercise 16A; 1a, 2a, 4, 6, 7, 8, 9, 10, 13, 15, 16, 18

