
Solving LHS > RHS 
An efficient way of solving LHS > RHS is to rewrite the inequation as 

LHS – RHS > 0
This is because finding when functions are positive (or negative) can 
be discovered by investigating the critical points of their domain. 

A function can only change sign at;
• an x-intercept  OR
• a discontinuity in the domain

Bracket Interval Notation

[ : interval endpoint is included

( : interval endpoint is not inculded
[a,b]: closed - all endpoints are included

(a,b): open – no endpoints are included
unbounded: if an interval extends to infinity in either direction
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Composite Functions
When two or more functions combine to create a new function.
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Exercise 3A; 4, 5bc, 6ace,
7acef, 8b, 9a, 10b, 12ac,

13bd, 14, 17, 19
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