Solving $L H S$
 $>R H S$

An efficient way of solving LHS $>$ RHS is to rewrite the inequation as LHS - RHS >0
This is because finding when functions are positive (or negative) can be discovered by investigating the critical points of their domain.

A function can only change sign at;

- an x-intercept $O R$
- a discontinuity in the domain

Bracket Interval Notation

[: interval endpoint is included
(: interval endpoint is not inculded
[a,b]: closed - all endpoints are included
(a,b): open - no endpoints are included unbounded: if an interval extends to infinity in either direction
e.g. (i) $x>5$

open unbounded interval
$(5, \infty)=\{x: x>5\}$
(iii) $4<x<6$

open bounded interval

$$
(4,6)=\{x: 4<x<6\}
$$

(v) $2<x \leq 4$

bounded interval
(ii) $x \leq 6$

closed unbounded interval
$(-\infty, 6]=\{x: x \leq 6\}$
(iv) $-2 \leq x \leq 1$

closed bounded interval
$[-2,1]=\{x:-2 \leq x \leq 1\}$
(vi) $2 \leq x \leq 3$ or $4<x<5$

union of intervals
$(2,4]=\{x: 2<x \leq 4\}$

Composite Functions

When two or more functions combine to create a new function.

$$
f(g(x))=f \circ g(x) \quad(\text { substitute } g(x) \text { into } f(x))
$$

e.g. $f(x)=\frac{2 x}{4-x}$ and $g(x)=\frac{1}{x^{2}}$

$$
\begin{aligned}
f \circ g(x) & =\frac{2\left(\frac{1}{x^{2}}\right)}{4-\frac{1}{x^{2}}} \\
& =\frac{2}{4 x^{2}-1}
\end{aligned}
$$

$$
g \circ f(x)=\frac{1}{\left(\frac{2 x}{4-x}\right)^{2}}
$$

$$
=\frac{(4-x)^{2}}{4 x^{2}}
$$

e.g. (i) $(x-1)^{2}(x+3) \leq 0$

$$
x \leq-3 \text { or } x=1
$$

$$
\text { (ii) } \frac{2}{x+3}<5
$$

