A Curve Sketching Мепи

1. Rewrite the function as one complete fraction
2. Find y-intercept i.e. substitute $x=0$
3. Find x-intercepts i.e. numerator $=0$ solve $R(x)=0$ to find where (if anywhere) the curve cuts
4. Perform a polynomial division

$$
y=Q(x) \text { is the } \quad \text { solve } A(x)=0 \text { to find }
$$

horizontal/oblique vertical asymptotes asymptote
5. Take a note of any symmetry i.e. odd $\&$ even functions, symmetry in $y=x$

A note about asymptotes

1. Vertical asymptotes: created from exclusions in the domain Curves do not touch/cut vertical asymptotes
2. Horizontal asymptotes: created when a function converges to a specific value
Curves can cut/touch horizontal asymptotes
Three limits that affect the value of the horizontal asymptote

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{x}=0 \quad \lim _{x \rightarrow \infty} e^{-x}=0 \quad \lim _{x \rightarrow-\infty} e^{x}=0
$$

$$
\begin{array}{ll}
\text { e.g. (i) } \lim _{x \rightarrow \infty} \frac{x^{2}+x}{1-x^{2}} & \text { (ii) } \lim _{x \rightarrow \infty} \frac{e^{x}+e^{-x}}{2 e^{x}} \text { (iii) } \lim _{x \rightarrow-\infty} \frac{e^{x}+e^{-x}}{2 e^{x}} \\
=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}+\frac{x}{x^{2}}} \frac{1+0}{x^{2}-\frac{x^{2}}{x^{2}}}=\frac{1+0}{0-1}=-1 & =\lim _{x \rightarrow-\infty} \frac{e^{2 x}+1}{2 e^{2 x}} \\
= & =\frac{1}{2} \\
& =\frac{1}{0}=\infty
\end{array}
$$

Example: Sketch the graph of $y=\frac{x^{3}-9 x}{x^{2}-4} \quad$, clearly indicating any asymptotes and any points where the graph meets the axes.

- y-intercepts: $x=0$
- x-intercepts: $x^{3}-9 x=0$

$$
\begin{aligned}
x\left(x^{2}-9\right) & =0 \\
x & =0 \quad \text { and } x= \pm 3
\end{aligned}
$$

$$
\begin{aligned}
y & =\frac{x^{3}-9 x}{x^{2}-4} \\
& =x-\frac{5 x}{x^{2}-4}
\end{aligned}
$$

- vertical asymptotes: $x^{2}-4=0$

$$
x= \pm 2
$$

- oblique asymptote: $y=x$
- curve meets asymptote: $5 x=0$

$$
x=0
$$

- odd function: \Rightarrow rotational symmetry

