Geometric Series

An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term.
The constant amount is called the common ratio, symbolised, r.

(ii) If $T_{2}=7$ and $T_{4}=49$, find the general term

$$
\begin{aligned}
a r & =7 \\
a r^{3} & =49 \\
\hline r^{2} & =7 \\
r & = \pm \sqrt{7} \quad \therefore a= \pm \sqrt{7} \\
T_{n} & =(\sqrt{7})(\sqrt{7})^{n-1} \\
& =(\sqrt{7})^{n}
\end{aligned}
$$

OR

$$
\begin{aligned}
T_{n} & =(-\sqrt{7})(-\sqrt{7})^{n-1} \\
& =(-\sqrt{7})^{n} \\
& =(-1)^{n}(\sqrt{7})^{n}
\end{aligned}
$$

(iii) find the first term of $1,4,16, \ldots$ to be greater than 500 .

$$
a=1, r=4 \quad T_{n}=1(4)^{n-1}
$$

$$
\begin{aligned}
T_{n} & >500 \\
4^{n-1} & >500
\end{aligned}
$$

$$
\log 4^{n-1}>\log 500
$$

$$
(n-1) \log 4>\log 500
$$

$$
n-1>4.48
$$

$$
n>5.48
$$

$T_{6}=1024$, is the first term >500

Arithmetic \& Geometric Means

Arithmetic Mean(average)

$$
A M=\frac{a_{1}+a_{2}+a_{3}+\ldots+a_{n}}{n}
$$

Geometric Mean

$$
G M= \pm \sqrt[n]{a_{1} a_{2} a_{3} \ldots a_{n}}
$$

$e . g$.Find the $A M$ and $G M$ of 4 and 25

$$
\begin{array}{rlrl}
A M & =\frac{25+4}{2} & G M & = \pm \sqrt{25 \times 4} \\
& =\frac{29}{2} & & = \pm \sqrt{100} \\
& & & \pm 10 \\
\hline
\end{array}
$$

(ii) Find x and y if $2, x, y, 128$ form a GP

$$
\begin{aligned}
& x=\sqrt{2 y} y=\sqrt{128 x} \\
& y^{2}=128 x \\
&=128 \sqrt{2 y} \\
& y^{4}=32768 y \\
& y\left(y^{3}-32768\right)=0 \\
& y=0 \quad \text { or } \quad y=32 \\
& \therefore y=32 \quad(0 \text { cannot be a term in a GP }) \\
& x=8 \quad, y=32
\end{aligned}
$$

Exercise 1C; 4be, 6, 8cf, 9ad, 10f, 13, 14, 16c, 19b

Exercise 1D; 1ae, 2af, 3ace etc, 4 (use $A M$ \& $G M$), 5b, 6b, 9, 10a, 11, 12, 13bd, 14, 16, 18ab, 19, 20

