Dot (Scalar) Product

$$
\text { Let } \underset{\sim}{u}=\binom{x_{1}}{y_{1}} \text { and } \underset{\sim}{v}=\binom{x_{2}}{y_{2}}
$$

then;

$$
\underset{\sim}{u} \cdot \underset{\sim}{v}=x_{1} x_{2}+y_{1} y_{2}
$$

NOTE: the result is a scalar

$$
\text { e.g. } \left.\begin{array}{rl}
(\underset{\sim}{i}-7 j \\
\sim
\end{array}\right) \cdot(\underset{\sim}{6 i}+\underset{\sim}{4 j})=1 \times 6+(-7) \times 40
$$

$$
\lambda \underset{\sim}{u} \cdot \underset{\sim}{v}=\lambda(\underset{\sim}{u} \cdot \underset{\sim}{v}) \quad \underset{\sim}{u} \cdot \underset{\sim}{u}=x_{1}^{2}+y_{1}^{2}
$$

$$
=|\underset{\sim}{u}|^{2}
$$

$$
\begin{aligned}
\underset{\sim}{a} \cdot(\underset{\sim}{u}+\underset{\sim}{v})=\underset{\sim}{a} \cdot \underset{\sim}{u}+\underset{\sim}{a} \cdot \underset{\sim}{v} \quad \underset{\sim}{u}+\underset{\sim}{v}) \cdot(\underset{\sim}{u}-\underset{\sim}{v}) & =\underset{\sim}{\underset{\sim}{u}} \underset{\sim}{u} \cdot \widetilde{\sim} \cdot \underset{\sim}{u} \\
& =\underset{\sim}{u}-\left.\underset{\sim}{v} \cdot \underset{\sim}{v} \cdot \underset{\sim}{v}\right|^{v}
\end{aligned}
$$

$$
\underset{\sim}{u} \cdot \underset{\sim}{v}=\underset{\sim}{v} \cdot \underset{\sim}{u}
$$

e.g. Find, to the nearest degree, the angle between the two vectors

$$
\underset{\sim}{a}=3 \underset{\sim}{i}-2 \underset{\sim}{j} \text { and } \underset{\sim}{b}=4 \underset{\sim}{i}+\underset{\sim}{j}
$$

$$
\begin{aligned}
\underset{\sim}{a} \cdot \underset{\sim}{b} & =\underset{\sim}{|a||\underset{\sim}{a}|} \cos \theta \\
\cos \theta & =\frac{\underset{\sim}{a} \cdot \underset{\sim}{|a|}}{\underset{\sim}{b} \mid} \\
\cos \theta & =\frac{3 \times 4+(-2) \times 1}{\sqrt{13} \times \sqrt{17}} \\
& =\frac{10}{\sqrt{221}} \\
\underline{\theta} & =48^{\circ} \quad \text { (to nearest degree) }
\end{aligned}
$$

Consequences of the Dot Product

$$
\begin{gathered}
\underset{\sim}{u} \cdot \underset{\sim}{v}=0 \Leftrightarrow \underset{\sim}{u} \perp \underset{\sim}{v} \\
\therefore \underset{\sim}{v} \cdot j=j \cdot \underset{\sim}{v}=0 \\
\underset{\sim}{u} \cdot \underset{\sim}{v}= \\
\underset{\sim}{v}\|\underset{\sim}{v}|\underset{\sim}{v}| \underset{\sim}{u}\| \underset{\sim}{v}
\end{gathered}
$$

$|\underset{\sim}{u} \| \underset{\sim}{v}|>0 \Rightarrow \underset{\sim}{u} \underset{\sim}{u}$ and $\underset{\sim}{v}$ have the same direction
$|\underset{\sim}{u} \| \underset{\sim}{v}|<0 \Rightarrow \underset{\sim}{u}$ and $\underset{\sim}{v} \underset{\sim}{v}$ have opposite directions

$$
\therefore \underset{\sim}{i} \cdot \underset{\sim}{i}=\underset{\sim}{j} \cdot \underset{\sim}{j}=1
$$

e.g. Extension 12022 HSC Q11d)

The vectors $\underset{\sim}{u}=\binom{a}{2}$ and $\underset{\sim}{v}=\binom{a-7}{4 a-1}$ are perpendicular

What are the possible values of a ?

$$
\begin{aligned}
\binom{a}{2} \cdot\binom{a-7}{4 a-1} & =0 \\
\left(a^{2}-7 a\right)+(8 a-2) & =0 \\
a^{2}+a-2 & =0 \\
(a+2)(a-1) & =0 \\
a=-2 \quad \text { or } a & =1
\end{aligned}
$$

