Solving Inequations

All inequations can be solved using two simple steps;

1. Find the critical points (boundaries) of the solution by solving the corresponding equation
2. Test the regions between the critical points to see if whether or not they are included in the solution

1. Linear Inequations

Solve like a normal equation, remembering to change the sign if you multiply or divide by a negative number.

> "if you change the sign, you change the sign"

2. Quadratic (and polynomials in general) Inequations

e.g. $6-5 x-x^{2}>0$

$$
\begin{aligned}
x^{2}+5 x-6 & <0 \\
(x+6)(x-1) & <0
\end{aligned}
$$

3. Absolute Value Inequations

Solve using the definition of absolute value

$$
|a|= \begin{cases}a, & a \geq 0 \\ -a, & a<0\end{cases}
$$

e.g. $|3 x+2| \geq 1$
$3 x+2 \geq 1$ or $-(3 x+2) \geq 1$

$$
\begin{array}{rlrl}
3 x & \geq-1 & -3 x-2 & \geq 1 \\
x & \geq-\frac{1}{3} & -3 x & \geq 3 \\
& x & \leq-1
\end{array}
$$

4. Inequations with Pronumerals in the Denominator

$$
\begin{aligned}
\frac{2}{x+3} & =5 \\
2 & =5 x+15 \\
5 x & =-13 \\
x & =-\frac{13}{5}
\end{aligned}
$$

$$
\longleftrightarrow \bigotimes_{-3}^{\longleftrightarrow \frac{13}{5}} \xrightarrow{\longleftrightarrow}
$$

$$
\therefore x<-3 \text { or } x>-\frac{13}{5}
$$

Note: $3 \& 4$ can be turned into turn it into a quadratic inequation

$$
\begin{aligned}
& |3 x+2| \geq 1 \\
& (3 x+2)^{2} \geq 1
\end{aligned}
$$

square both sides

(squares are always positive, just like absolute value)

$$
9 x^{2}+12 x+4 \geq 1
$$

$$
9 x^{2}+12 x+3 \geq 0
$$

$$
3 x^{2}+4 x+1 \geq 0
$$

$$
(3 x+1)(x+1) \geq 0
$$

$\therefore x \leq-1$ or $x \geq-\frac{1}{3}$

$$
\begin{gathered}
\text { (ii) } \frac{2}{x+3}<5 \\
2(x+3)<5(x+3)^{2} \\
5(x+3)^{2}-2(x+3)>0 \\
(x+3)(5 x+13)>0 \\
\therefore x<-3 \text { or } x>-\frac{13}{5} \\
\hline
\end{gathered}
$$

multiply both sides by the denominator squared
(to ensure it is a positive number, so the sign stays the same)

(iii) Extension 1 HSC 2022 Q11 f)

$$
\begin{aligned}
\frac{x}{2-x} & \geq 5 \\
\frac{x}{2-x}-5 & \geq 0 \\
\frac{x-(10-5 x)}{2-x} & \geq 0 \\
\frac{6 x-10}{2-x} & \geq 0
\end{aligned}
$$

Case 1: both numerator \& denominator are positive

$$
\begin{aligned}
6 x-10 & \geq 0 \\
x \geq & \wedge 2-x>0 \\
& \wedge x<2 \\
& \frac{5}{3} \leq x<2 \quad \therefore \frac{5}{3} \leq x<2
\end{aligned}
$$

Case 2: both numerator \& denominator are negative

$$
6 x-10 \leq 0 \wedge 2-x<0
$$

$$
x \leq \frac{5}{3} \wedge x>2
$$

no solutions

Using Graphs to Solve Inequations

 When we solved LHS - RHS > 0 graphically, we were essentially asking;$$
\text { when is } y=L H S-R H S \text { above the line } y=0 ?
$$

$f(x)>g(x)$ can be solved graphically, using the same idea
when is $y=f(x)$ above the line $y=g(x)$?

$$
\begin{array}{r}
\text { e.g. }|5 x-3|>x+2 \\
|5 x-3|=x+2
\end{array}
$$

$$
\begin{array}{rlrl}
5 x-3 & =x+2 & 3-5 x & =x+2 \\
4 x & =5 & 6 x & =1 \\
x= & \frac{5}{4} & x & =\frac{1}{6} \\
& x<\frac{1}{6} & \text { or } & x>\frac{5}{4} \\
\hline
\end{array}
$$

computer graphing
packages such as Desmos make this option more attractive

Exercise 3D; 4c, 6e, 7d, 8c, 9b, 12b(i), 13c, 14a, 17, 18
Exercise 3E; 1bdf, 2bdf, 3c, 4c, 9d, 10d, 11b, 13bdf, 15, 16, 19bc, 20, 22

