Vector Projections

When a vector is broken into components, it is rewritten as the projection of the vector onto the x-axis and the y-axis

horizontal component of $\overrightarrow{\mathrm{OP}}=\sqrt{3} \underset{\sim}{i}$ vertical component of $\overrightarrow{\mathrm{OP}}=j$

$$
\overrightarrow{\mathrm{OP}}=\sqrt{3} \underset{\sim}{i}+\underset{\sim}{j}
$$

horizontal and vertical was chosen for convenience, a vector can be projected onto any other vector

To project $\underset{\sim}{u}$ onto the vector $\underset{\sim}{v}$

* Drop perpendiculars from the endpoints of $\underset{\sim}{u}$ onto $\underset{\sim}{v}$
* Calculate the length of the "shadow" of the projection
* Multiply by the unit vector in the direction of $\underset{\sim}{v}$

$$
\text { projection of } \underset{\sim}{u} \text { on } \underset{\sim}{v}=(|\underset{\sim}{u}| \cos \theta) \underset{\sim}{v}
$$

Now $\underset{\sim}{u} \cdot \underset{\sim}{v}=|\underset{\sim}{u} \| \underset{\sim}{v}| \cos \theta$

$$
\begin{aligned}
& \underset{\sim}{|u| \cos \theta=} \frac{\underset{\sim}{u \cdot v}}{\mid \underset{\sim}{v \mid}} \\
& \operatorname{proj}_{\underset{\sim}{v}}^{\sim} \underset{\sim}{u}=\underset{\sim}{\underset{\sim}{u v \mid}} \times \underset{\sim}{v} \\
&=\frac{\underset{\sim}{v} \cdot v}{\underset{\sim}{v \mid}} \times \frac{\underset{\sim}{v}}{\mid \underset{\sim}{v \mid}} \\
&=\frac{\underset{\sim}{v} \cdot v}{|\underset{\sim}{v}|^{2}} \times \underset{\sim}{v}
\end{aligned}
$$

$$
\operatorname{proj}_{\underset{\sim}{v}}^{\underset{\sim}{u}}=\binom{\underset{\sim}{u \cdot v}}{\underset{\sim}{v} \cdot \underset{\sim}{v}} \underset{\sim}{v}
$$

dot product and division are NOT inverse operations, so you cannot cancel
Notes: $\operatorname{proj}_{\underset{v}{ }}^{\lambda \underset{\sim}{\sim}}=\lambda \operatorname{proj}_{\underset{v}{ }}^{\underset{\sim}{\sim}} \underset{\sim}{u}$

$$
\operatorname{proj}_{\underset{w}{ }}(\underset{\sim}{u}+\underset{\sim}{v})=\operatorname{proj}_{\underset{w}{ }}^{\underset{\sim}{u}} \underset{\sim}{u}+\operatorname{proj}_{\underset{\sim}{w}}^{v}
$$

e.g. (i) Find the length of the projection of $\underset{\sim}{a}=5 \underset{\sim}{i}-j$ onto $\underset{\sim}{b}=3 \underset{\sim}{i}+4 \underset{\sim}{j}$

$$
\begin{aligned}
\underbrace{|b|}_{\sim} \mid & =\frac{(5)(3)+(-1)(4)}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{11}{5}
\end{aligned} \begin{aligned}
& \text { the length of the } \\
& \text { projection is also } \\
& \text { known as the } \\
& \text { scalar projection }
\end{aligned}
$$

(ii) Find the projection of $\underset{\sim}{u}=2 \underset{\sim}{i}-5 \underset{\sim}{j}$ onto $\underset{\sim}{v}=-2 \underset{\sim}{i}+3 j$

$$
\begin{aligned}
\operatorname{proj}_{\sim} \underset{\sim}{u} & =\frac{(2)(-2)+(-5)(3)}{(-2)^{2}+3^{2}} \times(-2 \underset{\sim}{i}+3 \underset{\sim}{j}) \\
& =-\frac{19}{13}(-2 \underset{\sim}{i}+3 j) \\
& =\frac{38}{13} \underset{\sim}{i}-\frac{57}{13} \underset{\sim}{\sim}
\end{aligned}
$$

Exercise 8E;
1a, 2b, 3a, 4a, 5, 6ac, 7b, 8b, 9, 10, 11,

13, 14

