Mathematical Induction

 e.g.(iii) Prove $n(n+1)(n+2)$ is divisible by 3Prove the result is true for $n=1$

$$
\begin{aligned}
& (1)(2)(3) \\
& =6 \quad \text { which is divisible by } 3 \\
& \quad \text { Hence the result is true for } n=1
\end{aligned}
$$

Assume the result is true for $n=k$, where $k \in \mathbb{Z}^{+}$
i.e. $k(k+1)(k+2)=3 P$, where $P \in \mathbb{Z}$

Prove the result is true for $n=k+1$
i.e. Prove $(k+1)(k+2)(k+3)=3 Q$, where $Q \in \mathbb{Z}$

Proof:

$$
\begin{aligned}
& (k+1)(k+2)(k+3) \\
= & k(k+1)(k+2)+3(k+1)(k+2) \\
= & 3 P+3(k+1)(k+2) \quad \text { (by assumption) } \\
= & 3[P+(k+1)(k+2)] \\
= & 3 Q, \text { where } Q=P+(k+1)(k+2) \in \mathbb{Z}
\end{aligned}
$$

Hence the result is true for $n=k+1$ if it is also true for $n=k$
Since the result is true for $n=1$, then it is true $\forall n \in \mathbb{Z}^{+}$by induction
(iv) Prove $3^{3 n}+2^{n+2}$ is divisible by 5

Prove the result is true for $n=1$

$$
\begin{array}{r}
3^{3}+2^{3} \\
=27+8
\end{array}
$$

$$
=35 \quad \text { which is divisible by } 5
$$

$$
\text { Hence the result is true for } n=1
$$

Assume the result is true for $n=k, k \in \mathbb{Z}^{+}$

$$
\text { i.e. } 3^{3 k}+2^{k+2}=5 P \text {, where } P \in \mathbb{Z}
$$

Prove the result is true for $n=k+1$

$$
\text { i.e. Prove } 3^{3 k+3}+2^{k+3}=5 Q \text {, where } Q \in \mathbb{Z}
$$

Proof: $\quad 3^{3 k+3}+2^{k+3}$

$$
\begin{aligned}
& =27 \cdot 3^{3 k}+2^{k+3} \\
& =27\left(5 P-2^{k+2}\right)+2^{k+3} \quad\left(3^{3 k}=5 P-2^{k+2} \text { by assumption }\right) \\
& =135 P-27 \cdot 2^{k+2}+2^{k+3} \\
& =135 P-27 \cdot 2^{k+2}+2 \cdot 2^{k+2} \\
& =135 P-25 \cdot 2^{k+2} \\
& =5\left(27 P-5 \cdot 2^{k+2}\right) \\
& =5 Q, \text { where } Q=27 P-5 \cdot 2^{k+2} \in \mathbb{Z}
\end{aligned}
$$

Hence the result is true for $n=k+1$ if it is also true for $n=k$
Since the result is true for $n=1$, then it is true $\forall n \in \mathbb{Z}^{+}$by induction
(v) Prove $x^{2 n+1}+a^{2 n+1}$ is divisible by $(x+a)$ for all positive integers Prove the result is true for $n=1$

$$
\begin{aligned}
& x^{3}+a^{3} \\
= & (x+a)\left(x^{2}-a x+a^{2}\right) \\
& \text { which is divisible by }(x+a) \\
& \text { Hence the result is true for } n=1
\end{aligned}
$$

Assume the result is true for $n=k$, where $k \in \mathbb{Z}^{+}$
i.e $x^{2 k+1}+a^{2 k+1}=(x+a) Q(x)$, where $Q(x)$ is a polynomial

Prove the result is true for $n=k+1$
i.e Prove $x^{2 k+3}+a^{2 k+3}=(x+a) T(x)$, where $T(x)$ is a polynomial

Proof:

$$
\begin{aligned}
& x^{2 k+3}+a^{2 k+3}=x^{2} \times x^{2 k+1}+a^{2 k+3} \\
&= x^{2}\left\{(x+a) Q(x)-a^{2 k+1}\right\}+a^{2 k+3}(\text { by assumption rearranged }) \\
&=(x+a) x^{2} Q(x)-a^{2 k+1} x^{2}+a^{2 k+1} a^{2} \\
&=(x+a) x^{2} Q(x)-a^{2 k+1}\left(x^{2}-a^{2}\right) \\
&=(x+a) x^{2} Q(x)-a^{2 k+1}(x-a)(x+a) \\
&=(x+a)\left\{x^{2} Q(x)-a^{2 k+1}(x-a)\right\} \\
&=(x+a) T(x), \quad \text { where } T(x)=x^{2} Q(x)-a^{2 k+1}(x-a) \\
& \quad \quad \quad \text { which is a polynomial }
\end{aligned}
$$

Hence the result is true for $n=k+1$ if it is also true for $n=k$ Since the result is true for $n=1$, then it is true $\forall n \in \mathbb{Z}^{+}$by induction

Exercise 2B; 2bd, 3, 4a, 5ac, 6, 7, 8a, 9, 10, 13a

in set notation: for all integers $n \geq 0 \Rightarrow \forall n \in \mathbb{Z}: n \geq 0$ for all even integers $n \geq 0 \Rightarrow \forall n \in \mathbb{Z}: n \geq 0: \exists a \in \mathbb{Z}: n=2 a$

