Applications of Euler's

Formula

Exponential Functions

$$
\begin{aligned}
e^{i \theta+2 i k \pi} & =\cos (\theta+2 \pi k)+i \sin (\theta+2 \pi k) \\
& =\cos \theta+i \sin \theta \text { if } k \in \mathbb{Z} \\
& =e^{i \theta}
\end{aligned}
$$

$$
e^{i(\theta+2 \pi k)}=e^{i \theta}
$$

So e^{z} is a periodic function, with period $2 \pi i$

Trigonometric Functions

Earlier we proved the following identities:

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \text { and } z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta
$$

rearranging these we get;

$$
\begin{aligned}
& 2 \cos n \theta=e^{n \theta i}+e^{-n \theta i} \quad 2 i \sin n \theta=e^{n \theta i}-e^{-n \theta i} \\
& \cos n \theta=\frac{1}{2}\left(e^{n \theta i}+e^{-n \theta i}\right) \quad \sin n \theta=\frac{1}{2 i}\left(e^{n \theta i}-e^{-n \theta i}\right)
\end{aligned}
$$

e.g. Prove the identities;
(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =\frac{1}{(2 i)^{2}}\left(e^{i \theta}-e^{-i \theta}\right)^{2}+\frac{1}{2^{2}}\left(e^{i \theta}+e^{-i \theta}\right)^{2} \\
& =\frac{1}{4}\left(-e^{2 i \theta}+2-e^{-2 i \theta}+e^{2 i \theta}+2+e^{-2 i \theta}\right) \\
& =\frac{1}{4}(4)=1
\end{aligned}
$$

(ii) $\sin ^{3} \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta$

$$
\begin{aligned}
& \sin ^{3} \theta=\left(\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right)^{3} \\
&=\frac{e^{3 i \theta}-3 e^{i \theta}+3 e^{-i \theta}-e^{-3 i \theta}}{-8 i} \\
&=\frac{1}{4}\left(\frac{3\left(e^{i \theta}-e^{-i \theta}\right)-\left(e^{3 i \theta}-e^{-3 i \theta}\right)}{2 i}\right) \\
&=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta \\
&
\end{aligned}
$$

(iii) $2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)$

$$
\begin{aligned}
2 \sin \alpha \cos \beta & =2 \times \frac{e^{i \alpha}-e^{-i \alpha}}{2 i} \times \frac{e^{i \beta}+e^{-i \beta}}{2} \\
& =\frac{e^{i(\alpha+\beta)}+e^{i(\alpha-\beta)}-e^{-i(\alpha-\beta)}-e^{-i(\alpha+\beta)}}{2 i} \\
& =\frac{e^{i(\alpha+\beta)}-e^{-i(\alpha+\beta)}}{2 i}+\frac{e^{i(\alpha-\beta)}-e^{i(\alpha-\beta)}}{2 i} \\
& =\sin (\alpha+\beta)+\sin (\alpha-\beta)
\end{aligned}
$$

Roots of Complex Numbers

e.g. Find the square roots of $1-\sqrt{3} i$

$$
e^{z}=e^{z+2 i \pi k}
$$

$$
\begin{aligned}
& z^{2}=1-\sqrt{3} i \\
&=2 e^{-\frac{i \pi}{3}} \\
& z=\sqrt{2} e^{-\frac{i \pi}{6}+\pi k}, k=0,1 \\
& z=\sqrt{2} e^{-\frac{i \pi}{6}}, \sqrt{2} e^{\frac{5 i \pi}{6}} \\
& z=\sqrt{2}\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right), \sqrt{2}\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
&=\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2} i,-\frac{\sqrt{6}}{2}+\frac{1}{2} i \\
&
\end{aligned}
$$

e.g. 2020 Extension 2 HSC Q9

What is the maximum value of $\left|e^{i \theta}-2\right|+\left|e^{i \theta}+2\right|$ for $0 \leq \theta \leq 2 \pi$?
Let $z=e^{i \theta} \Rightarrow|z|=1$

$|z-2|$ is the length of the vector joining z to 2
$|z+2|$ is the length of the vector joining z to -2
maximum $|z-2|+|z+2|$ is when $z= \pm i$

$$
\begin{aligned}
|i-2| & =\sqrt{1^{2}+2^{2}} \\
& =\sqrt{5}
\end{aligned}
$$

$\therefore \max |z-2|+|z+2|=2 \sqrt{5}$

e.g. 2021 Extension 2 HSC Q14c) (ii)

(ii) By using part (i), or otherwise, show that $\operatorname{Re}\left(e^{\frac{i \pi}{10}}\right)=$

$$
\operatorname{Re}\left(e^{\frac{i \pi}{10}}\right)=\cos \frac{\pi}{10}
$$

$$
\text { let } \theta=\frac{\pi}{10}
$$

$$
16 \cos ^{5}\left(\frac{\pi}{10}\right)-20 \cos ^{3}\left(\frac{\pi}{10}\right)+5 \cos \left(\frac{\pi}{10}\right)=\cos \frac{\pi}{2}
$$

$$
\text { let } x=\cos \frac{\pi}{10} ;
$$

$$
=0
$$

$$
16 x^{5}-20 x^{3}+5 x=0
$$

$$
16 x^{4}-20 x^{2}+5=0
$$

$$
(x \neq 0)
$$

$$
\begin{array}{rlr}
\therefore \cos \frac{\pi}{10} & =\sqrt{\frac{5 \pm \sqrt{5}}{8}} \quad\left(\text { as } \frac{\pi}{10} \text { is acute }, \cos \frac{\pi}{10}>0\right) \\
& =0.59 \text { or } 0.95
\end{array}
$$

from the graph we observe

$$
\begin{aligned}
& \cos \frac{\pi}{10}>\cos \frac{\pi}{4}=0.71 \\
& \therefore \cos \frac{\pi}{10}=\sqrt{\frac{5+\sqrt{5}}{8}}
\end{aligned}
$$

thus $\operatorname{Re}\left(e^{\frac{i \pi}{10}}\right)=\sqrt{\frac{5+\sqrt{5}}{8}}$

Exercise 3E;
1, 3, 4bc, 6, 7, 8b ii, iii,11bc, 14

