Geometrical Representation of Complex Numbers

Complex numbers can be represented on the Argand Diagram as vectors.

The advantage of using vectors is that they can be moved around the Argand Diagram
No matter where the vector is placed its length (modulus) and the angle made with the x axis (argument) is constant

NOTE :

the parallelogram formed by adding vectors has two diagonals;
$z_{1}+z_{2}$ and $z_{1}-z_{2}$
To add two complex numbers, place the vectors "head to tail"
To subtract two complex numbers, place the vectors "head to head" (or add the negative vector)

Trianglar Inequality

In any triangle a side will be shorter than the sum of the other two sides and bigger than the difference of the other two sides

In $\triangle A B C ; A C \leq A B+B C$ and $A C-A B \leq B C$
(equality occurs when $A B C$ is a straight line)

$$
\| z_{1}\left|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

e.g.(1995)

The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively. Thus the length of $P Q$ is $|z-w|$
(i)Show that $|z-w| \leq|z|+|w|$

The length of $O P$ is $|z|$
The length of $O Q$ is $|w|$
The length of $P Q$ is $|z-w|$
Using the triangular inequality on $\triangle O P Q$

$$
|z-w| \leq|z|+|w|
$$

(ii) Construct the point R representing $z+w$, What can be said about the quadrilateral $O P R Q$?
$\underline{O P R Q \text { is a parallelogram }}$
(iii) If $|z-w|=|z+w|$, what can be said about $\frac{w}{z}$?

$$
|z-w|=|z+w| \quad \text { i.e. diagonals in } O P R Q \text { are }=
$$

$\therefore O P R Q$ is a rectangle

$$
\begin{aligned}
\arg w-\arg z & =\frac{\pi}{2} \\
\arg \frac{w}{z} & =\frac{\pi}{2} \quad \therefore \frac{w}{z} \text { is purely imaginary }
\end{aligned}
$$

Multiplication

$$
\begin{gathered}
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \quad \arg z_{1} z_{2}=\arg z_{1}+\arg z_{2} \\
r_{1} \operatorname{cis} \theta_{1} \times r_{2} \operatorname{cis} \theta_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

i.e. if we multiply z_{1} by z_{2}, the vector z_{1} is rotated anticlockwise by θ_{2} and its length is multiplied by r_{2}

If we multiply z_{1} by $\operatorname{cis} \theta$ the vector $O A$ will rotate by an angle of θ in an anti-clockwise direction. If we multiply by $r c i s \theta$ it will also multiply the length of $O A$ by a factor of r

Note: $\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=i \quad \therefore i z_{1}$ will rotate $O A$ anticlockwise 90 degrees.

Multiplication by i is a rotation anticlockwise by $\frac{\pi}{2}$

REMEMBER: A vector is HEAD minus TAIL

$$
\begin{aligned}
& \overrightarrow{D C}=\overrightarrow{D A} \times i \\
& C-1=(\omega-1) i \\
& C=1+(\omega-1) i \\
&=(1-i)+i \omega \\
& \hline
\end{aligned}
$$

OR

$$
\begin{aligned}
& B=A+\overrightarrow{D C} \\
& B=\omega+C-1 \\
& B=\omega+(\omega-1) i \\
&=-i+(1+i) \omega \\
& \hline \boldsymbol{O R} \\
& B=C+\overrightarrow{D A} \\
& B=(1-i)+i \omega+(\omega-1) \\
&=-i+(1+i) \omega \\
& \hline
\end{aligned}
$$

$$
\overrightarrow{D B}=\sqrt{2} \operatorname{cis} \frac{\pi}{4} \times \overrightarrow{D A}
$$

$$
B-1=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)(\omega-1)
$$

$$
B=(1+i)(\omega-1)+1
$$

$$
=\omega-1+i \omega-i+1
$$

$$
=-i+(1+i) \omega
$$

e.g.(2000)

In the Argand Diagram, $O A B C$ is a rectangle, where $O C=2 O A$.
The vertex A corresponds to the complex number ω
(i) What complex number corresponds to C ?

$$
\begin{gathered}
\overrightarrow{O C}=\overrightarrow{O A} \times 2 i \\
C=2 i \omega
\end{gathered}
$$

(ii) What complex number corresponds to the point of intersection D of the diagonals $O B$ and $A C$?
diagonals bisect in a rectangle
$\therefore D=$ midpoint of $A C$
$D=\frac{A+C}{2}$

$$
\begin{gathered}
D=\frac{\omega+2 i \omega}{2} \\
\therefore D=\left(\frac{1}{2}+i\right) \omega
\end{gathered}
$$

(ii) 2022 Extension 2 HSC Q15d)

The complex number z satisfies $\left|z-\frac{4}{z}\right|=2$
Using the triangle inequality, or otherwise, show that $|z| \leq \sqrt{5}+1$

by the Δ inequality

$$
\begin{aligned}
|z| & \leq\left|z-\frac{4}{z}\right|+\left|\frac{4}{z}\right| \\
& =2+\frac{4}{|z|} \\
|z|^{2} & \leq 2|z|+4
\end{aligned}
$$

$$
|z|^{2}-2|z|-4 \leq 0
$$

$$
(|z|-1)^{2} \leq 5
$$

$$
-\sqrt{5} \leq|z|-1 \leq \sqrt{5}
$$

$$
1-\sqrt{5} \leq|z| \leq 1+\sqrt{5}
$$

$$
\therefore|z| \leq 1+\sqrt{5}
$$

(iii) 2022 Extension 2 HSC Q16a)

A square in the Argand plane has vertices

$$
5+5 i, 5-5 i,-5-5 i \text { and }-5+5 i
$$

The complex numbers $z_{A}=5+i, z_{B}$ and z_{C} lie on the square and form the vertices of an equilateral triangle, as shown in the diagram.

Find the exact value of the complex number z_{B}

$$
\begin{array}{llrl}
z_{B}=b+5 i & \underset{\sim}{u} & =z_{B}-z_{A} & \stackrel{v}{v} \\
z_{C}=c-5 i & & z_{C}-z_{A} \\
& =(b-5)+4 i & & =(c-5)-6 i
\end{array}
$$

$$
\begin{aligned}
\underset{\sim}{v} & =\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \underset{\sim}{u} \\
(c-5)-6 i & =\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)[(b-5)+4 i] \\
& =\frac{1}{2}(b-5)+2 i+\frac{\sqrt{3}}{2}(b-5) i-2 \sqrt{3}
\end{aligned}
$$

equating imaginary parts

$$
\begin{array}{rlrl}
-6 & =2+\frac{\sqrt{3}}{2}(b-5) \\
\frac{\sqrt{3}}{2}(b-5) & =-8 \\
\sqrt{3} b-5 \sqrt{3} & =-16 \\
b & =5-\frac{16}{\sqrt{3}} \quad & \therefore z_{B}=5-\frac{16}{\sqrt{3}}+5 i
\end{array}
$$

Exercise 1E; 2 to 9, 11, 12, 13, 16 to 19, 21, 23, 24

