Multi-Stage Experiments

Independent events are events whose outcome has no affect on the other events

If A, B, C, D, \ldots are independent events, then

$$
P(A B C D \ldots)=P(A) \times P(B) \times P(C) \times P(D) \times \ldots
$$

e.g. In a game of Yahtzee, 5 dice are rolled. Find the probability of rolling exactly four 6's

$$
P(\text { four } 6 \text { 's })=P(6666 \overline{6})+P(666 \overline{6} 6)+P(66 \overline{6} 66)+P(6 \overline{6} 666)+P(\overline{6} 6666)
$$

$$
\begin{aligned}
& =\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6}+\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{1}{6} \times \frac{1}{6} \\
& +\frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{5}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \\
& =\frac{5}{7776}+\frac{5}{7776}+\frac{5}{7776}+\frac{5}{7776}+\frac{5}{7776}=\frac{25}{7776}
\end{aligned}
$$

OR

With independent events the probability will remain the same, regardless of the order

$$
\begin{aligned}
P(\text { four } 6 ' s) & =5 \times P(6666 \overline{6}) \\
& =5 \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \\
& =\frac{25}{7776}
\end{aligned}
$$

If the events are not independent, all different cases need to be considered.
e.g. Two letters of the word LOTTO are randomly arranged.

What is the probability that the arrangement is $\mathbf{T O}$?
As the choice of letters is not equally likely, it is NOT true to say

$$
P(\mathrm{TO})=\frac{2}{5} \times \frac{2}{4}=\frac{1}{5} \times
$$

Possibilities
LO OL
TO OT
OO TT

$$
P(\mathrm{TO})=\frac{1}{8}
$$

TL LT
Exercise 12E; 3, 5, 7, 9, 10, 11, 13, 15, 16

