

The cubic function has two different basic shapes
The classic shape has a horizontal point of inflection and can be factorised into a perfect cube $y=k(x-a)^{3}$

Otherwise it will be a continuous curve with two turning points

Similar to the linear and quadratic functions, all cubic functions can be transformed from the two basic shapes using translations, rotations, reflections or a combination of all three.

Recognising the cubic function

- terms contain at most one variable, one variable is to the power of one, the other variable has a term to the power of three

Polynomials

The polynomial function has many different basic shapes even

Polynomials that can be factorised down to a single perfect factor

$$
\begin{gathered}
y=k(x-a)^{n} \\
\text { will take on the }
\end{gathered}
$$

common basic shape

etc
etc
As power gets bigger, curve gets; - flatter at base

Recognising the polynomial function

- steeper at the sides
power ${ }^{\prime} l^{\prime} \quad y=d x^{n}+b\left(x^{n-1}+x^{n-2}+1\right.$ powers are + integers
- terms contain at most one variable, one variable is to the power of one, the other variables have positive integer powers
- highest power is the degree of the polynomial

Sketching Polynomials When drawing $y=P(x)$

- y intercept is the constant
- x intercepts are the roots, solve $P(x)=0$
- as $x \rightarrow \pm \infty, P(x)$ acts like the leading term
- even powered roots look like

- odd powered roots look like

e.g. $y=(x+1)(x-1)^{3}(x+2)^{2}$

Circles

Circles must be drawn with the same scale on both axes

Circles are not functions; they are a composite of two semi-circular functions

Recognising the circle

- both the independent and dependent variables have a term to the power of two
- the coefficients of the squared variables are the same

Often created when the dependent variable is made the subject of the function

Recognising the shape of functions involving square roots

- if you are unsure, square both sides and the basic shape will be revealed

$$
\begin{aligned}
& y=\sqrt{r^{2}-x^{2}} \\
& y^{2}=r^{2}-x^{2} \\
& x^{2}+y^{2}=r^{2}
\end{aligned}
$$

\therefore circle
Exercise 3G; 1bd, 2b, 5, 6, 7, 8, 9cd, 13ae, 14, 15, 16, 17ac, 18

