Addition of Graphs

y = f(x) + g(x) can be graphed by first graphing y = f(x) and y = g(x) separately and then adding their ordinates together.

- find and mark the *x* and *y* intercepts
- draw lines perpendicular to *x* axis cutting both curves
- add the *y* coordinates along each line and mark the point

Things to keep in mind:

Discontinuities: any exclusions in the domain of the original function(s) remain in the new function e.g. $f(x) = x + \frac{1}{x}$, $g(x) = 1 - \frac{1}{x}$ y = f(x) + g(x)= x + 1, $x \neq 0$ **x-intercept:** If f(x) = -g(x), then y = f(x) + g(x) = 0**symmetry:** like functions retain symmetry when added odd function + odd function = odd function

even function + even function = even function

y = f(x) - g(x) can be graphed by first graphing y = f(x) and y = -g(x) separately and then adding the ordinates together.

The graph of y = x + g(x) where g(x) is bounded

If the graph of y = g(x) is bounded by the lines y = a and y = b, then y = x + g(x) will be bounded by the lines y = x + a and y = x + b

Multiplication of Graphs

 $y = f(x) \times g(x)$ can be graphed by first graphing y = f(x) and y = g(x) separately and then;

- mark the *x* intercepts, this will be where the new function changes sign
- multiply the "signs" of each function to determine the sign of the new function
- mark the *y* intercept
- special note needs to be made of points where f(x) = 1, or g(x) = 1 (and -1).
- if f(x) or $g(x) \to 0$ or $\pm \infty$, then so will the new function

$$(ii) y = x^{2} (x+1) (x-1)^{3}$$

Equation 2: y=x+1	•
Equation 3: y=(x-1) ³	
Equation 4: y=x ² (x+1)(x-1) ³	•

Graphs of the Form $y = [f(x)]^2$

 $y = f(x) \times f(x)$ i.e. $y = [f(x)]^2$ can be graphed by first graphing y = f(x) then;

- all single roots will become double roots
- all stationary points must still be stationary points
- all discontinuities will remain
- horizontal and oblique asymptotes may change (square their value)
- if |f(x)| > 1 then $[f(x)]^2 > f(x)$ i.e. new curve is above the old curve
- if |f(x)| < 1 then $[f(x)]^2 < f(x)$ i.e. new curve is below the old curve

Division of Graphs
$$y = \frac{f(x)}{g(x)}$$
 can be thought of as $y = f(x) \times \frac{1}{g(x)}$ and the same procedures as multiplication can be followed except;

- the *x* intercepts of *g*(*x*) will become vertical asymptotes or point discontinuities
- investigation the behaviour of the function for large values of *x* will be required (find horizontal/oblique asymptotes , look at dominance)

$$y = \frac{(x+1)(x-2)}{(x+2)(x-1)}$$

= $\frac{x^2 - x - 2}{x^2 + x - 2}$
= $1 - \frac{2x}{x^2 + x - 2}$ \therefore horizontal asymptote : $y = 1$

e.g.
$$y = \frac{(x+1)(x-2)}{(x+2)(x-1)}$$

odd function \times even function = odd function