Parametric Coordinates

An alternative way of describing graphs
Cartesian Form: curve is described by one equation and points are described by two numbers.
Parametric Form: curve is described by two equations and points are described by one number (parameter).
Cartesian equation $\longrightarrow y=x^{2} \quad x=\frac{t}{2} \quad, y=\frac{t^{2}}{4} \longleftarrow$ Parametric equations

Changing from parametric to Cartesian equations

If $x=f(t)$ and $y=g(t)$ are parametric equations of a curve C, and you eliminate the parameter (t) between the two equations, each point on the curve C lies on the curve represented by the resulting Cartesian equation.
e.g. (i) A curve is given parametrically by the equations $x=2 t+1$, $y=3 t-2$.
Show that the curve is a straight line.

$$
\begin{array}{rlrl}
x=2 t+1 & y & =3 t-2 \\
t=\frac{1}{2}(x-1) & y & =3\left[\frac{1}{2}(x-1)\right]-2 \\
y & =3 t-2 \\
& y & =\frac{3}{2} x-\frac{7}{2} \quad \text { which is a straight line }
\end{array}
$$

(ii) Describe the curve represented by the parametric equations

(iii) Complete the table of values for the curve $x=\sin \theta, y=\sin 2 \theta$, taking the values $0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, \ldots, 360^{\circ}$, and sketch the curve.

θ	0	30	60	90	120	150	180	210	240	270	300	330	360
x	0	0.5	0.87	1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0
y	0	0.87	0.87	0	-0.87	-0.87	0	0.87	0.87	0	-0.87	-0.87	0

$$
x=\sin \theta \quad y=\sin 2 \theta
$$

$$
\begin{aligned}
& y=2 \sin \theta \cos \theta \\
& \sqrt{1-x^{2}}
\end{aligned} \begin{aligned}
& y=2 x \sqrt{1-x^{2}} \\
& y^{2}=4 x^{2}\left(1-x^{2}\right)
\end{aligned}
$$

$$
4 x^{4}-4 x^{2}+y^{2}=0
$$

Exercise 5H; 1, 3, 4, 6a, 7cd, 8a, 9, 15

