Rates of Change

A derivative measures the rate of one quantity changing with respect to another quantity

The steeper the curve, the faster the quantity changes

(ii) A ball is bounced and its distance from the ground is graphed.

Distance = total amount travelled Displacement = how far from the starting point

(i) Find the height of the ball after 1 second

when
$$t = 1, x = 5(1)(8-1)$$

= 35
After 1 second the ball is 35 metres above the ground

(ii) At what other time is the ball this same height above the ground?

when
$$x = 35$$
, $5t(8-t) = 35$
 $t(8-t) = 7$
 $8t-t^2 = 7$
 $t^2 - 8t + 7 = 0$
 $(t-1)(t-7) = 0$
 $t = 1$ or $t = 7$

: ball is 35 metres above ground again after 7 seconds

Average velocity =	change in displacement
	change in time
$=\frac{x_2 - x_1}{x_2 - x_1}$	
$t_2 - t_1$	

(iii) Find the average velocity during the 1st second average velocity = $\frac{x_2 - x_1}{t_2 - t_1}$ = $\frac{35 - 0}{1 - 0}$

: average velocity during the 1st second was 35m/s

= 35

(iv) Find the average velocity during the fifth second

when t = 4, x = 5(4)(8-4) average velocity $= \frac{x_2 - x_1}{t_2 - t_1}$ =80 when t = 5, x = 5(5)(8-5)=75 =-5

 \therefore average velocity during the 5th second was -5m/s

(iv) Find the average velocity during its 8 seconds in the air

average velocity
$$= \frac{x_2 - x_1}{t_2 - t_1}$$
$$= \frac{0 - 0}{8 - 0}$$
$$= 0$$

: average velocity during the 8 seconds was 0m/s

Average speed =	distance travelled
	time taken

(v) Find the average speed during its 8 seconds in the air average speed = $\frac{\text{distance travelled}}{\text{time taken}}$ = $\frac{160}{8}$ = 20

: average speed during the 8 seconds was 20m/s

Exercise 9A; 3, 5, 6, 7, 8, 9, 10, 12, 13