Rates of Change

A derivative measures the rate of one quantity changing with respect to another quantity
The steeper the curve, the faster the quantity changes

the slope of the
secant $P Q$
gives the
average
rate of change

the slope of the tangent at R
gives the
instantaneous rate of change

Travel Graphs

e.g. A coach leaves the depot at 9 am for a one day tour

Time

(i) How long was the first stop?

30 minutes

(ii) When did the coach start to return to the depot?
$\underline{1: 30 \mathrm{pm}}$
(iii) How fast was the $s=\frac{d}{t}$
coach travelling on the return trip?

$$
\begin{aligned}
& =\frac{200}{2} \\
& =100 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(iv) Calculate the $s=\frac{d}{t}$ the whole trip?

$$
\begin{aligned}
& =\frac{400}{6.5} \\
& =61.5 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(ii) A ball is bounced and its distance from the ground is graphed.

> Distance $=$ total amount travelled
> Displacement $=$ how far from the starting point
(i) Find the height of the ball after 1 second

$$
\text { when } t=1, x=5(1)(8-1)
$$

$$
=35
$$

After 1 second the ball is 35 metres above the ground
(ii) At what other time is the ball this same height above the ground?

$$
\text { when } x=35, \quad 5 t(8-t)=35 \begin{aligned}
t(8-t) & =7 \\
8 t-t^{2} & =7 \\
t^{2}-8 t+7 & =0 \\
(t-1)(t-7) & =0 \\
t=1 & \text { or } t=7
\end{aligned}
$$

\therefore ball is 35 metres above ground again after 7 seconds

$$
\begin{aligned}
\text { Average velocity } & =\frac{\text { change in displacement }}{\text { change in time }} \\
& =\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
\end{aligned}
$$

(iii) Find the average velocity during the $1^{\text {st }}$ second

$$
\begin{aligned}
\text { average velocity } & =\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \\
& =\frac{35-0}{1-0} \\
& =35
\end{aligned}
$$

\therefore average velocity during the 1 st second was $35 \mathrm{~m} / \mathrm{s}$
(iv) Find the average velocity during the fifth second

$$
\begin{aligned}
\text { when } t=4, x & =5(4)(8-4) & \text { average velocity } & =\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \\
& =80 & & \\
\text { when } t=5, x & =5(5)(8-5) & & \frac{75-80}{5-4} \\
& =75 & & =-5
\end{aligned}
$$

\therefore average velocity during the 5 th second was $-5 \mathrm{~m} / \mathrm{s}$
(iv) Find the average velocity during its 8 seconds in the air

$$
\begin{aligned}
\text { average velocity } & =\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \\
& =\frac{0-0}{8-0} \\
& =0
\end{aligned}
$$

\therefore average velocity during the 8 seconds was $0 \mathrm{~m} / \mathrm{s}$

$$
\text { Average speed }=\frac{\text { distance travelled }}{\text { time taken }}
$$

(v) Find the average speed during its 8 seconds in the air average speed $=\frac{\text { distance travelled }}{\text { time taken }}$

$$
\begin{aligned}
& =\frac{160}{8} \\
& =20
\end{aligned}
$$

\therefore average speed during the 8 seconds was $20 \mathrm{~m} / \mathrm{s}$

Exercise 9A; 3, 5, 6, 7, 8, 9, 10, 12, 13

