## The Gradient Function

The function $y=f(x)$ measures the distance of the graph from the $x$-axis

The gradient function $y=f^{\prime}(x)$ measures how steep the graph is at the point (i.e. the gradient, or the rate that distance is changing) Note: the gradient function is also known as the derivative

Geometry can be used to find the gradient function of lines and semi-circles.

Lines

| horizontal line | oblique line |
| :---: | :---: |
| $f(x)=c$ | $f(x)=m x+b$ |
| $f^{\prime}(x)=0$ | $f^{\prime}(x)=m$ |

## Semicircles

$f(x)=\sqrt{r^{2}-x^{2}}$


Unlike a line, a curve does not have a consistent slope.
The slope of a curve is defined as the slope of the tangent to the curve at any particular point.

With a semicircle, we know that the radius is perpendicular to the tangent

$$
\begin{aligned}
m_{O A} & =\frac{f(x)}{x} \\
\therefore m_{\text {tangent }} & =\frac{-x}{f(x)}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\sqrt{r^{2}-x^{2}} \\
& f^{\prime}(x)=\frac{-x}{\sqrt{r^{2}-x^{2}}}
\end{aligned}
$$

Any other graph needs to be estimated using secants around the point

Quadratics $f(x)=x^{2}$


Accuracy of the answer is totally dependent on the choice of the two points

For a quadratic, symmetrically chosen points will always give an exact answer

## Hyperbola



$$
\begin{aligned}
m_{A B} & =\frac{\frac{1}{3}-1}{3-1} \\
& =-\frac{1}{3} \Rightarrow \frac{f^{\prime}(2) \approx-\frac{1}{3}}{\left(f^{\prime}(2)=-\frac{1}{4}\right)}
\end{aligned}
$$

Note: It is vital that the graph is continuous between the two chosen points
If BC was used, clearly the estimate would be poor
If you have an accurate graph, it is usually better to draw the tangent and calculate its slope using rise
run
Exercise 9A; 1 or 2, 3 or 4, 5adg, 9 (don't worry about sketch), 10

