Dot Product

A vector is a line segment in both $2 \mathrm{D} \& 3 \mathrm{D}$, the rules and properties remain the same in both dimensions.

$$
\text { If } \begin{aligned}
& \underset{\sim}{u} \neq 0 \wedge \underset{\sim}{v} \neq 0 \\
& \underset{\sim}{u} \cdot \underset{\sim}{v}=\underset{\sim}{v}|\underset{\sim}{v}| \cos \theta
\end{aligned}
$$

NOTE: θ is acute or obtuse

$$
\begin{aligned}
& \text { If } \underset{\sim}{u}=\left(\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \text { and } \underset{\sim}{v}=\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) \\
& \underset{\sim}{u} \cdot \underset{\sim}{v}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \underset{\sim}{u}=0 \vee \underset{\sim}{v} \underset{\sim}{v}=0 \\
& \underset{\sim}{u} \cdot \underset{\sim}{v}=0
\end{aligned}
$$

Dot Product Properties

(1) $-\underset{\sim}{u}| | \underset{\sim}{v}|\leq \underset{\sim}{u} \cdot \underset{\sim}{v} \leq|\underset{\sim}{u} \| \underset{\sim}{v}|$
(5) $\begin{aligned}(\underset{\sim}{u}+\underset{\sim}{v}) \cdot(\underset{\sim}{u}-\underset{\sim}{v}) & =\underset{\sim}{u} \cdot \underset{\sim}{u} \\ & =\left.\underset{\sim}{u}\right|^{2}-\left.\underset{\sim}{v} \cdot \underset{\sim}{v}\right|^{v}\end{aligned}$
(2) $\underset{\sim}{u} \cdot \underset{\sim}{v}=\underset{\sim}{v} \cdot \underset{\sim}{u}$
(6) $\lambda \underset{\sim}{u} \cdot \underset{\sim}{v}=\lambda(\underset{\sim}{u} \cdot \underset{\sim}{v})$
(3) $\underset{\sim}{u} \cdot \underset{\sim}{u}=x_{1}{ }^{2}+y_{1}{ }^{2}$
(7) $\underset{\sim}{u} \cdot \underset{\sim}{v}=0 \Leftrightarrow \underset{\sim}{u} \perp \underset{\sim}{v}$

$$
=|\underset{\sim}{u}|^{2}
$$

(4) $\underset{\sim}{a} \cdot(\underset{\sim}{u}+\underset{\sim}{v})=\underset{\sim}{a} \cdot \underset{\sim}{u}+\underset{\sim}{a} \cdot \underset{\sim}{v}$
(8) $\underset{\sim}{u} \cdot \underset{\sim}{v}= \pm|\underset{\sim}{u}\|\underset{\sim}{v} \mid \Leftrightarrow \underset{\sim}{u}\| \underset{\sim}{v}$
(9) $\underset{\sim}{u} \| \underset{\sim}{v}|>0 \Rightarrow \underset{\sim}{v}|<0$ and $\underset{\sim}{v}$ have the same direction $|\underset{\sim}{u} \| v|<0 \Rightarrow \underset{\sim}{u}$ and $\underset{\sim}{v}$ have opposite directions
eg (i) Let $\underset{\sim}{a} \underset{\sim}{b}$ and $\underset{\sim}{c}$ be three 3-dimensional vectors.
Prove that $\underset{\sim}{a} \cdot(\underset{\sim}{b}+\underset{\sim}{c})=\underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{a} \cdot \underset{\sim}{c}$

$$
\begin{aligned}
& \underset{\sim}{a} \cdot(\underset{\sim}{b}+\underset{\sim}{c}) \\
& =\left(a_{1} \underset{\sim}{i}+a_{2} \underset{\sim}{j}+a_{3} \underset{\sim}{k}\right) \cdot\left[\left(b_{1}+c_{1}\right) i+\left(b_{2}+c_{2}\right) j+\left(b_{3}+c_{3}\right) \underset{\sim}{k}\right] \\
& =a_{1}\left(b_{1}+c_{1}\right)+a_{2}\left(b_{2}+c_{2}\right)+a_{3}\left(b_{3}+c_{3}\right) \\
& =a_{1} b_{1}+a_{1} c_{1}+a_{2} b_{2}+a_{2} c_{2}+a_{3} b_{3}+a_{3} c_{3} \\
& =\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)+\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right) \\
& =\underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{a} \cdot \underset{\sim}{c}
\end{aligned}
$$

(ii) Prove that the vectors $3 \underset{\sim}{i}-2 \underset{\sim}{j}+4 \underset{\sim}{k}$ and $-4 \underset{\sim}{i}-8 \underset{\sim}{j}-\underset{\sim}{k}$ are perpendicular

$$
\begin{gathered}
(3 \underset{\sim}{i}-2 \underset{\sim}{j}+4 \underset{\sim}{k}) \cdot(-4 \underset{\sim}{i}-8 \underset{\sim}{j}-\underset{\sim}{\underset{\sim}{r}})=(3)(-4)+(-2)(-8)+(4)(-1) \\
\quad \therefore(\underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{i k}) \perp(-4 \underset{\sim}{i}-8 \underset{\sim}{j}-\underset{\sim}{k})
\end{gathered}
$$

(iii) The point A has (non-zero) position vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and the vector $\overrightarrow{O A}$ makes angles α, β and γ with the x, y and z axes respectively

(iv) 2023 Extension 2 HSC Q15b)

On the triangular pyramid $A B C D, L$ is the midpoint of $A B, M$ is the midpoint of $A C, N$ is the midpoint of $A D, P$ is the midpoint of $C D, Q$ is the midpoint of $B D$ and R is the midpoint of $B C$.

Let $\underset{\sim}{b}=\overrightarrow{A B}, \underset{\sim}{c}=\overrightarrow{A C}$ and $\underset{\sim}{d}=\overrightarrow{A D}$
(i) Show that $\overrightarrow{L P}=\frac{1}{2}(-\underset{\sim}{b}+\underset{\sim}{c}+\underset{\sim}{d})$

$$
\begin{aligned}
\overrightarrow{L P} & =-\overrightarrow{A L}+\overrightarrow{A D}+\overrightarrow{D P} \\
& =-\frac{1}{2} \overrightarrow{A B}+\overrightarrow{A D}+\frac{1}{2} \overrightarrow{D C}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{L P} & =-\frac{1}{2} \underset{\sim}{b}+\underset{\sim}{d}+\frac{1}{2}(\underset{\sim}{c}-\underset{\sim}{d}) \\
& =\frac{1}{2}(-\underset{\sim}{b}+\underset{\sim}{c}+\underset{\sim}{d})
\end{aligned}
$$

(ii) It can be shown that $\overrightarrow{M Q}=\frac{1}{2}(\underset{\sim}{b}-\underset{\sim}{c}+\underset{\sim}{d})$

Prove that

$$
\text { and } \overrightarrow{N R}=\frac{1}{2}(\underset{\sim}{b}+\underset{\sim}{c}-\underset{\sim}{d})
$$

$$
\begin{aligned}
& |\overrightarrow{A B}|^{2}+|\overrightarrow{A C}|^{2}+|\overrightarrow{A D}|^{2}+|\overrightarrow{B C}|^{2}+|\overrightarrow{B D}|^{2}+|\overrightarrow{C D}|^{2}=4\left(|\overrightarrow{L P}|^{2}+|\overrightarrow{M Q}|^{2}+|\overrightarrow{N R}|^{2}\right) \\
& |\overrightarrow{L P}|^{2}=\overrightarrow{L P} \cdot \overrightarrow{L P}
\end{aligned}
$$

$$
=\frac{1}{4}(-\underset{\sim}{b}+\underset{\sim}{c}+\underset{\sim}{d}) \cdot(-\underset{\sim}{b}+\underset{\sim}{c}+\underset{\sim}{d})
$$

$$
=\frac{1}{4}(\underset{\sim}{b} \cdot \underset{\sim}{b}+\underset{\sim}{c} \cdot \underset{\sim}{c}+\underset{\sim}{d} \cdot \underset{\sim}{d}+2(-\underset{\sim}{b} \cdot \underset{\sim}{c}-\underset{\sim}{b} \cdot \underset{\sim}{d}+\underset{\sim}{c} \cdot d))
$$

$$
=\frac{1}{4}\left(|\underset{\sim}{b}|^{2}+|\underset{\sim}{c}|^{2}+|\underset{\sim}{d}|^{2}+2(-\underset{\sim}{b} \cdot \underset{\sim}{c}-\underset{\sim}{b} \cdot \underset{\sim}{d}+\underset{\sim}{c} \cdot d)\right)
$$

similarly

$$
\begin{aligned}
& |\overrightarrow{M Q}|^{2}=\frac{1}{4}\left(|\underset{\sim}{b}|^{2}+|\underset{\sim}{c \mid}|^{2}+|d|^{2}+2(-\underset{\sim}{b} \cdot \underset{\sim}{c}+\underset{\sim}{b} \cdot \underset{\sim}{d}-\underset{\sim}{c} \cdot d)\right) \\
& |\overrightarrow{N R}|^{2}=\frac{1}{4}\left(\left|\sim^{\mid b}\right|^{2}+|c|^{2}+|\underset{\sim}{d}|^{2}+2\left(\underset{\sim}{b} \cdot \underset{\sim}{c}-\underset{\sim}{b} \cdot \underset{\sim}{c}-\sim_{\sim}^{c} \cdot d\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 4\left(|\overrightarrow{L P}|^{2}+|\overrightarrow{M Q}|^{2}+|\overrightarrow{N R}|^{2}\right)=3|\vec{b}|^{2}+3|\underline{c}|^{2}+3|d|^{2}-2(\underset{\sim}{b} \cdot \underset{\sim}{c}+\underset{\sim}{b} \cdot d+\underset{\sim}{d}+\underset{\sim}{c}) \\
& |\overrightarrow{A B}|^{2}+|\overrightarrow{A C}|^{2}+|\overrightarrow{A D}|^{2}+|\overrightarrow{B C}|^{2}+|\overrightarrow{B D}|^{2}+|\overrightarrow{C D}|^{2} \\
& =|\underset{\sim}{\mid c}|^{2}+\left.|c|\right|^{2}+|\underset{\sim}{d}|^{2}+|\underset{\sim}{c}-\underset{\sim}{c}|^{2}+|\underset{\sim}{d}-\underset{\sim}{b}|^{2}+|\underset{\sim}{d}-\underset{c}{c}|^{2} \\
& =\left|\underset{d^{2}}{ }\right|^{2}+|c|^{2}+|d|^{2}+(\underset{\sim}{c}-b) \cdot(\underset{\sim}{c}-\underset{\sim}{b})+(\underset{\sim}{d}-\underset{\sim}{b}) \cdot(\underset{\sim}{d}-\underset{\sim}{b})+(\underset{\sim}{d}-c) \cdot(d \sim \sim-c)
\end{aligned}
$$

$$
\begin{aligned}
& =3|\underset{\sim}{\mid c}|^{2}+\left.3|c| c\right|^{2}+3|d|^{2}-2(b \cdot \sim \cdot c+\underset{\sim}{c} \cdot d+\underset{\sim}{c} \cdot d) \\
& =4\left(|\overrightarrow{L P}|^{2}+|\overrightarrow{M Q}|^{2}+|\overrightarrow{N R}|^{2}\right)
\end{aligned}
$$

Exercise 5C; 1a, 4, 6, 9, 11, 14b, 15b, 16a, 18, 20, 21

