The Slope of a Tangent to a Curve

$$
\begin{aligned}
m_{P Q} & =\frac{f(x+h)-f(x)}{x+h-x} \\
& =\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

To find the exact value of the slope of \boldsymbol{k}, we calculate the limit of the slope $\mathbf{P Q}$ as \boldsymbol{h} gets closer to 0 . for the slope of line \boldsymbol{k}.

Q: Where do we position \boldsymbol{Q} to get the best estimate?
A: As close to \boldsymbol{P} as possible.

$$
\text { slope of tangent }=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

This is known as the "derivative of \boldsymbol{y} with respect to \boldsymbol{x} " and is symbolised; $\frac{d y}{d x}, y^{\prime}, f^{\prime}(x), \frac{d}{d x}\{f(x)\}$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The process is called "differentiating from first principles" e.g. (i) Differentiate $y=6 x+1$ by using first principles.

$$
\begin{array}{rlrl}
f(x) & =6 x+1 & \frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f(x+h) & =6(x+h)+1 & & =\lim _{h \rightarrow 0} \frac{6 x+6 h+1-(6 x+1)}{h} \\
& =6 x+6 h+1 & & =\lim _{h \rightarrow 0} \frac{6 h}{h} \\
& & =\lim _{h \rightarrow 0} 6 \\
& & =6
\end{array}
$$

(ii) Find the equation of the tangent to $y=x^{2}-5 x+2$ at the point $(1,-2)$.

$$
\begin{aligned}
f(x) & =x^{2}-5 x+2 \\
f(x+h) & =(x+h)^{2}-5(x+h)+2 \\
& =x^{2}+2 x h+h^{2}-5 x-5 h+2 \\
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-5 x-5 h+2-x^{2}+5 x-2}{h} \\
= & \lim _{h \rightarrow 0} \frac{2 x h+h^{2}-5 h}{h} \\
= & \lim _{h \rightarrow 0} 2 x+h-5 \\
& =2 x-5 \\
\text { when } x & =1, \frac{d y}{d x}=2(1)-5 \\
& =-3
\end{aligned}
$$

\therefore the slope of the tangent at $(1,-2)$ is -3

$$
\begin{aligned}
& y+2=-3(x-1) \\
& y+2=-3 x+3 \\
& y=-3 x+1
\end{aligned}
$$

Exercise 9B; 2, 3, 5a, 7ab (i, ii, v), 10, 11, 12, 13

