Variance

Let *X* be a **discrete random variable**, then the variance of *X* is;

$$\operatorname{Var}(X) = \sum (x - \mu)^2 p(x)$$

where
$$p(x) = P(X = x) \ge 0$$

 $\mu = E(X)$

Note: $x - \mu$ is the **deviation** of x from μ

Var(X) is a measure of spread

e.g. Using the data of the milk marketing survey, find the variance of the number of litres of milk consumed in a week by a family.

x	0	1	2	3	4	5	Σ	
p(x)	$\frac{2}{25}$	$\frac{5}{25}$	$\frac{9}{25}$	$\frac{5}{25}$	$\frac{3}{25}$	$\frac{1}{25}$	1	
xp(x)	0	$\frac{5}{25}$	$\frac{18}{25}$	$\frac{15}{25}$	$\frac{12}{25}$	$\frac{5}{25}$	2.2 🕊	μ

Variance

Let *X* be a **discrete random variable**, then the variance of *X* is;

$$\operatorname{Var}(X) = \sum (x - \mu)^2 p(x)$$

where
$$p(x) = P(X = x) \ge 0$$

 $\mu = E(X)$

Note: $x - \mu$ is the **deviation** of x from μ

Var(X) is a measure of spread

e.g. Using the data of the milk marketing survey, find the variance of the number of litres of milk consumed in a week by a family.

x	0	1	2	3	4	5	Σ	
p(x)	$\frac{2}{25}$	$\frac{5}{25}$	$\frac{9}{25}$	$\frac{5}{25}$	$\frac{3}{25}$	$\frac{1}{25}$	1	
xp(x)	0	$\frac{5}{25}$	$\frac{18}{25}$	$\frac{15}{25}$	$\frac{12}{25}$	$\frac{5}{25}$	2.2 🛩	μ
$(x-\mu)^2$	$\frac{121}{25}$	$\frac{36}{25}$	$\frac{1}{25}$	$\frac{16}{25}$	$\frac{81}{25}$	$\frac{196}{25}$		

Variance

Let *X* be a **discrete random variable**, then the variance of *X* is;

$$\operatorname{Var}(X) = \sum (x - \mu)^2 p(x)$$

where
$$p(x) = P(X = x) \ge 0$$

 $\mu = E(X)$

Note: $x - \mu$ is the **deviation** of x from μ

Var(X) is a measure of spread

e.g. Using the data of the milk marketing survey, find the variance of the number of litres of milk consumed in a week by a family.

x	0	1	2	3	4	5	Σ	
p(x)	$\frac{2}{25}$	$\frac{5}{25}$	$\frac{9}{25}$	$\frac{5}{25}$	$\frac{3}{25}$	$\frac{1}{25}$	1	
xp(x)	0	$\frac{5}{25}$	$\frac{18}{25}$	$\frac{15}{25}$	$\frac{12}{25}$	$\frac{5}{25}$	2.2 🛩	μ
$(x-\mu)^2$	$\frac{121}{25}$	$\frac{36}{25}$	$\frac{1}{25}$	$\frac{16}{25}$	$\frac{81}{25}$	$\frac{196}{25}$		$\begin{vmatrix} \operatorname{Var}(X) \\ = \Sigma (x - \mu)^2 n(x) \end{vmatrix}$
$(x-\mu)^2 p(x)$	$\frac{242}{625}$	$\frac{180}{625}$	$\frac{9}{625}$	$\frac{80}{625}$	$\frac{243}{625}$	$\frac{196}{625}$	1.52	= 1.52

al	ternatively	Var($(X) = \Sigma$	$\Sigma(x-\mu)$	$(u)^2 p(z)$	x)				
$= \mathrm{E}(X^2) - 2\mu\mathrm{E}(X) + \mu^2$										
$= \mathrm{E}(X^2) - 2\mu \times \mu + \mu^2$										
		$\operatorname{Var}(X) = \operatorname{E}(X^2) - \mu^2$								
where $E(X^2) = \sum x^2 p(x)$										
	x	0	1	2	3	4	5	Σ]	
	p(x)	$\frac{2}{25}$	$\frac{5}{25}$	$\frac{9}{25}$	$\frac{5}{25}$	$\frac{3}{25}$	$\frac{1}{25}$	1		
	xp(x)	0	$\frac{5}{25}$	$\frac{18}{25}$	$\frac{15}{25}$	$\frac{12}{25}$	$\frac{5}{25}$	2.2 🕊	μ	

alternatively
$$\operatorname{Var}(X) = \sum (x - \mu)^2 p(x)$$

 $= \operatorname{E}\left[(X - \mu)^2\right]$
 $= \operatorname{E}(X^2 - 2\mu X + \mu^2)$
 $= \operatorname{E}(X^2) - 2\mu \operatorname{E}(X) + \mu^2$
 $= \operatorname{E}(X^2) - 2\mu \times \mu + \mu^2$
 $\operatorname{Var}(X) = \operatorname{E}(X^2) - \mu^2$
where $\operatorname{E}(X^2) = \sum x^2 p(x)$
 $\frac{x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad \Sigma}{p(x) \quad \frac{2}{25} \quad \frac{5}{25} \quad \frac{9}{25} \quad \frac{5}{25} \quad \frac{3}{25} \quad \frac{1}{25} \quad 1}{25} \quad \frac{1}{25} \quad \frac{1}{25} \quad 1}{25} \quad \frac{1}{25} \quad \frac{$

Standard Deviation (σ)

If the random variable, *X*, is measured in units then variance $(E(X^2) - \mu^2)$ is measured in units².

Standard deviation is used to measure spread using the same units as the random variable.

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

or
$$\sigma^{2} = \operatorname{Var}(X)$$

e.g.
$$\sigma = \sqrt{1.52}$$

=1.23288...
=1.23 (to 2 dp)

Standardising Data

Data standardisation is the process of making sure your data set can be compared to other data sets

Original data

$$E(X) = \mu$$
 and $Var(X) = \sigma^2$

V = V + c

adding a constant amount to each piece of data

$$E(Y) = E(X+c) \qquad Var(Y) = Var(X+c)$$

$$= E(X) + E(c) \qquad = E[(X+c)^2] - (\mu+c)^2$$

$$= \mu+c \qquad = E[(X^2+2cX+c^2) - (\mu^2+2c\mu+c^2)$$
simply adding a constant amount does not change the shape of the data, it only translates it c units
$$= E(X^2) + 2cE(X) + c^2 - \mu^2 - 2c\mu - c^2$$

$$= E(X^2) + 2c\mu + c^2 - \mu^2 - 2c\mu - c^2$$

$$= E(X^2) - \mu^2$$

$$= Var(X) = \sigma^2$$

dividing each piece of data by a constant amount

 $Z = \frac{X}{k}$

$$E(Z) = E\left(\frac{X}{k}\right)$$
$$= \frac{E(X)}{k}$$
$$= \frac{\mu}{k}$$

dividing by a constant amount changes the shape of the data, as well as altering the mean

$$\operatorname{Var}(Z) = \operatorname{Var}\left(\frac{X}{k}\right)$$
$$= \operatorname{E}\left[\left(\frac{X}{k}\right)^{2}\right] - \left(\frac{\mu}{k}\right)^{2}$$
$$= \frac{\operatorname{E}(X^{2})}{k^{2}} - \frac{\mu^{2}}{k^{2}}$$
$$= \frac{\operatorname{E}(X^{2}) - \mu^{2}}{k^{2}}$$
$$= \frac{\operatorname{Var}(X)}{k^{2}}$$
$$= \frac{\sigma^{2}}{k^{2}} = \left(\frac{\sigma}{k}\right)^{2}$$

z-scores

A common standardisation is to "normalise" the data by creating a z-score

$$z = \frac{x - \mu}{\sigma}$$

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) \qquad Var(Z) = Var\left(\frac{X-\mu}{\sigma}\right)$$
$$= \frac{E(X-\mu)}{\sigma} \qquad = \frac{Var(X-\mu)}{\sigma^2}$$
$$= \frac{\mu-\mu}{\sigma} \qquad = \frac{\sigma^2}{\sigma^2} = 1$$
$$= 0 \qquad \therefore \mu_Z = 0 \quad \text{and} \quad \sigma_Z = 1$$

Exercise 13C; 1, 2, 3bd, 4, 6, 8, 9, 10, 11, 12abc, 13