Rates of Change \& Integration

 Integration allows the original quantity to be found from the rate of change.e.g. (i) 2017 Mathematics HSC Q13 d)

The rate at which water flows into a tank is given by

$$
\frac{d V}{d t}=\frac{2 t}{1+t^{2}}
$$

where V is the volume of water in the tank in litres and t is the time in seconds. Initially the tank is empty.

Find the exact amount of water in the tank after 10 seconds.

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{2 t}{1+t^{2}} \\
\int_{0}^{V} d V & =\int_{0}^{10} \frac{2 t}{1+t^{2}} d t
\end{aligned}
$$

Solving as a definite integral

1. separate the variables
2. match the limits of the variables
eliminates the need to find the constant of integration

$$
\begin{aligned}
\int_{0}^{V} d V & =\int_{0}^{10} \frac{2 t}{1+t^{2}} d t \\
{[V]_{0}^{V} } & =\left[\ln \left(1+t^{2}\right)\right]_{0}^{10} \\
V & =\ln \left(\frac{101}{1}\right) \\
& =\ln (101)
\end{aligned}
$$

\therefore there is $\ln (101)$ litres of water left in the tank
(ii) 2010 Mathematics HSC Q7 a)(ii)

The acceleration of a particle is given by;

$$
\ddot{x}=4 \cos 2 t
$$

where x is displacement in metres and t is time in seconds. Initially the particle is at the origin with a velocity of $1 \mathrm{~ms}^{-1}$

Find when the particle first comes to rest.

$$
\begin{array}{rlrl}
\frac{d v}{d t} & =4 \cos 2 t & \sin 2 t & =-\frac{1}{2} \\
\int_{1}^{0} d v & =4 \int_{0}^{t} \cos 2 t d t & 2 t & =\frac{7 \pi}{6} \\
{[v]_{1}^{0}} & =2[\sin 2 t]_{0}^{t} & t & =\frac{7 \pi}{12} \\
-1 & =2 \sin 2 t &
\end{array}
$$

\therefore the particle first comes to rest after $\frac{7 \pi}{12}$ seconds
(iii) 2023 Mathematics Advanced HSC Q26 a)

A camera films the motion of a swing in a park.
Let $x(t)$ be the horizontal distance, in metres, from the camera to seat of the swing at t seconds.
The seat is released from rest at a horizontal distance of 11.2 m from the camera.

The rate of change of x can be modelled by the equation

$$
\frac{d x}{d t}=-1.5 \pi \sin \left(\frac{5 \pi}{4} t\right)
$$

Find an expression for $x(t)$.

$$
\begin{aligned}
\frac{d x}{d t} & =-1.5 \pi \sin \left(\frac{5 \pi}{4} t\right) \\
\int_{11.2}^{x} d x & =-1.5 \pi \int_{0}^{t} \sin \left(\frac{5 \pi}{4} t\right) d t \\
{[x]_{11.2}^{x} } & =\frac{3 \pi}{2} \times \frac{4}{5 \pi}\left[\cos \left(\frac{5 \pi}{4} t\right)\right]_{0}^{t} \\
x-11.2 & =1.2 \cos \left(\frac{5 \pi}{4} t\right)-1.2 \\
x & =1.2 \cos \left(\frac{5 \pi}{4} t\right)+10
\end{aligned}
$$

(iv) 2013 Extension 1 HSC Q13 a)

A spherical raindrop of radius r metres loses water through evaporation at a rate that depends upon its surface area. The rate of change of the volume V of the raindrop is given by

$$
\frac{d V}{d t}=-10^{-4} \mathrm{~A}
$$

where t is in seconds and A is the surface area of the rain drop.
a) Show that $\frac{d r}{d t}$ is a constant.

$$
\begin{aligned}
\frac{d r}{d t}=? & \frac{d V}{d t}=-10^{-4} A & =\frac{4}{3} \pi r^{3} & \\
\frac{d r}{d t}=\frac{d V}{d t} \cdot \frac{d r}{d V} & \frac{d V}{d r} & =4 \pi r^{2} & \frac{d r}{d t}
\end{aligned}=-10^{-4} A \cdot \frac{1}{A}
$$

\therefore radius decreases at a constant rate of $10^{-4} \mathrm{~m} / \mathrm{s}$
b) How long does it take for a raindrop of volume $10^{-6} \mathrm{~m}^{3}$ to completely evaporate?

$$
\begin{array}{rlrl}
V & =\frac{4}{3} \pi r^{3} & \frac{d r}{d t} & =-10^{-4} \\
10^{-6} & =\frac{4}{3} \pi r^{3} & -10^{4} \int_{\sqrt[3]{3 \times 10^{-6}}}^{0} d r & =\int_{0}^{t} d t \\
r^{3} & =\frac{3 \times 10^{-6}}{4 \pi} & t & =10^{4}[r]_{0}^{\sqrt[3]{\frac{3 \times 10^{-6}}{4 \pi}}} \\
r & =\sqrt[3]{\frac{3 \times 10^{-6}}{4 \pi}} & t & =10^{4} \sqrt[3]{\frac{3 \times 10^{-6}}{4 \pi}} \\
& =62.03504909 \ldots \\
& =62 \mathrm{~seconds}
\end{array}
$$

\therefore it takes approximately 62 seconds to evaporate

Exercise 9F; 2, 3, 6, 8, 9, 11, 12, 13

