Position Vectors

	$\overrightarrow{\mathrm{OP}}$ position vector	(x, y) ordered pair		$\binom{x}{y}$ column vector		$x \underset{\sim}{i}+y \underset{\sim}{j}$ component form

$$
\underset{\sim}{|u|}=\sqrt{x^{2}+y^{2}} \quad \begin{aligned}
\text { direction } & =\theta \\
& =\tan ^{-1} \frac{y}{x}
\end{aligned}
$$

Space Curves

So far all of our motion has been motion in a straight line
Consider a position vector, $\underset{\sim}{r}(t)$, as a function of a scalar, t
As t varies $\underset{\sim}{r}$ describes a space curve

The velocity vector, $\underset{\sim}{v}(t)$, is tangential to the space curve at P.
To find velocity and acceleration, and their components, for objects moving in curvilinear paths, the use of vector analysis is needed.
displacement $\underset{\sim}{r}(t)=x(t) \underset{\sim}{i}+y(t) j$
velocity $\underset{\sim}{v}(t)=\dot{x}(t) \underset{\sim}{i}+\dot{y}(t) j$

$$
|\underset{\sim}{v}(t)|=\sqrt{\dot{x}(t)^{2}+\dot{y}(t)^{2}} \quad \text { direction }=\tan ^{-1}\left(\frac{\dot{y}}{\dot{x}}\right)
$$

acceleration $\underset{\sim}{a}(t)=\ddot{x}(t) \underset{\sim}{i}+\ddot{y}(t) \underset{\sim}{j}$

$$
|\underset{\sim}{a}(t)|=\sqrt{\ddot{x}(t)^{2}+\ddot{y}(t)^{2}}
$$

e.g. (i) A particle moves so that its velocity at time t is given by

$$
\underset{\sim}{v}(t)=-2 \sin 2 \underset{\sim}{i}+4 \cos 2 t \underset{\sim}{f} \text { for } 0 \leq t \leq \frac{\pi}{2}
$$

Given that $\underset{\sim}{r}(0)=\underset{\sim}{i}$, find the position vector of the particle at any time t.

$$
\begin{aligned}
& \begin{array}{rlrl}
\frac{d x}{d t}=-2 \sin 2 t & x-1 & =\cos 2 t-1 \\
x & =\cos 2 t
\end{array} \quad \frac{d y}{d t}=4 \cos 2 t \\
& \int_{1}^{x} d x=-2 \int_{0}^{t} \sin 2 t d t \quad y=2 \sin 2 t \quad \int_{0}^{y} d y=4 \int^{t} \cos 2 t \\
& {[x]_{1}^{x}=[\cos 2 t]_{0}^{t} \quad \underset{\sim}{r}(t)=\cos 2 \underset{\sim}{t i}+2 \sin 2 \underset{\sim}{\underset{\sim}{j}} \quad y=2[\sin 2 t]_{0}^{t}}
\end{aligned}
$$

(ii) The position vectors, at time t, of particles A and B are given by;

$$
\begin{aligned}
& \underset{\sim}{r}(t)=\left(t^{3}-9 t+8\right) \underset{\sim}{i}+t^{2} \underset{\sim}{j} \\
& \underset{\sim}{r}(t)=\left(2-t^{2}\right) \underset{\sim}{i}+(3 t-2) \underset{\sim}{j}
\end{aligned}
$$

Prove that A and B collide while travelling at the same speed, but at right angles to each other.
Particles will collide when they are at the same position at the same time

$$
\begin{aligned}
t^{3}-9 t+8 & =2-t^{2} \\
t^{3}+t^{2}-9 t+6 & =0
\end{aligned}
$$

$$
t^{2}=3 t-2
$$

$$
t^{2}-3 t+2=0
$$

$$
(t-2)(t-1)=0
$$

$$
\text { when } t=1, t^{3}+t^{2}-9 t+6=-1
$$

$$
t=1 \quad \text { or } t=2
$$

when $t=2, t^{3}+t^{2}-9 t+6=0$
\therefore the two particles collide after 2 seconds

$$
\begin{aligned}
& \underset{\sim}{r}=\left(t^{3}-9 t+8\right) \underset{\sim}{i}+t^{2} \underset{\sim}{j} \\
& \underset{\sim}{\dot{r}}=\left(3 t^{2}-9\right) \underset{\sim}{i}+2 t \underset{\sim}{j} \\
& \underset{\underset{\sim}{r}}{\underset{\sim}{r}}=\left(2-t^{2}\right) \underset{\sim}{i}+(3 t-2) \underset{\sim}{j} \\
& \underset{\sim}{r}{ }_{B}=-2 t \underset{\sim}{i}+3 \underset{\sim}{j} \\
& \text { when } t=2 ;{\underset{\sim}{r}}_{A}=3 \underset{\sim}{i}+4 \underset{\sim}{j} \\
& \underset{\sim}{r}{ }_{B}=-4 \underset{\sim}{i}+3 \underset{\sim}{j} \\
& \left|{\underset{\sim}{r}}_{A}\right|=\sqrt{3^{2}+4^{2}} \\
& =5 \\
& \left|{\dot{\underset{\sim}{r}}}_{B}\right|=\sqrt{(-4)^{2}+3^{2}} \\
& =5
\end{aligned}
$$

\therefore when the particles collide they are both travelling at $5 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\underset{\sim}{\dot{r}} \cdot \dot{\sim}_{\sim}^{\dot{r}} & =(3 \underset{\sim}{i}+\underset{\sim}{j} \underset{\sim}{j}) \cdot(-4 \underset{\sim}{i}+\underset{\sim}{j}) \\
& =(3)(-4)+(4)(3) \\
& =0
\end{aligned}
$$

\therefore the particles collide at right angles to each other

(iii) 2023 Extension 2 HSC Question 9

A particle travels along a curve from O to E in the $x y$-plane, as shown in the diagram.

The position vector of the particle is \boldsymbol{r}, its velocity is \boldsymbol{v}, and its acceleration is \boldsymbol{a}.

While travelling from O to E, the particle is always slowing down. Which of the following is consistent with the motion of the particle?
(A) $\boldsymbol{r} \cdot \boldsymbol{v} \leq 0$ and $\boldsymbol{a} \cdot \boldsymbol{v} \geq 0$
(B) $\boldsymbol{r} \cdot \boldsymbol{v} \leq 0$ and $\boldsymbol{a} \cdot \boldsymbol{v} \leq 0$
(C) $\boldsymbol{r} \cdot \boldsymbol{v} \geq 0$ and $\boldsymbol{a} \cdot \boldsymbol{v} \geq 0$
(D) $\boldsymbol{r} \cdot \boldsymbol{v} \geq 0$ and $\boldsymbol{a} \cdot \boldsymbol{v} \leq 0$

$$
\begin{aligned}
\boldsymbol{r}=\binom{x}{y} & =\left(\begin{array}{ll}
> & 0 \\
> & 0
\end{array}\right) \quad \boldsymbol{v}=\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{ll}
\geq & 0 \\
\geq & 0
\end{array}\right) \\
\boldsymbol{r} \cdot \boldsymbol{v} & =(>0)(>0)+(\geq 0)(\geq 0) \\
& \geq 0
\end{aligned}
$$

Particle is slowing down
\therefore acceleration is in the opposite direction to velocity

$$
\boldsymbol{a}=\binom{\ddot{x}}{\ddot{y}}=\binom{\leq 0}{\leq 0}
$$

$$
\boldsymbol{a} \cdot \boldsymbol{v}=(\geq 0)(\leq 0)+(\geq 0)(\leq 0)
$$

$$
\leq 0
$$

$$
\boldsymbol{r} \cdot \boldsymbol{v} \geq 0 \text { and } \boldsymbol{a} \cdot \boldsymbol{v} \leq 0
$$

