Comparing Discrete & Continuous Random Variables

Consider the probability distribution of the number of heads obtained when tossing two coins i.e. X = number of heads tossed

x	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Definitions

random variable: X

probability function: P(X = x)

cumulative probability function: $F(t) = P(X \le t) = \sum_{t \ge t} F(t)$

cumulative probability function is also known as the **cumulative distribution function**

e.g.
$$F(1) = \frac{3}{4}$$

$$P(X=x)$$

x = a

For a continuous random variable, a probability function does not exist Consider the random variable X = height of adults

Between any two values, say 170 cm and 175 cm, there is an infinite number of possible outcomes, hence P(X = 172.4) = 0

$$n(172.4) = 23$$

$$n(170 \le x \le 175) = \infty$$

$$P(x = 172.4) = \lim_{n \to \infty} \frac{23}{n}$$

$$= 0$$

The probability of any single value in a continuous distribution is zero

It allows continuous data to be treated as discrete data

By using relative frequencies and placing data into classes, a probability function could be evaluated

e.g. Let X = waiting time in minutes for a ski lift

x	0 – 1	1 – 2	2-3	3 – 4	4 - 5
f_r	0.214	0.196	0.210	0.190	0.190
<i>cf_r</i>	0.214	0.410	0.620	0.810	1

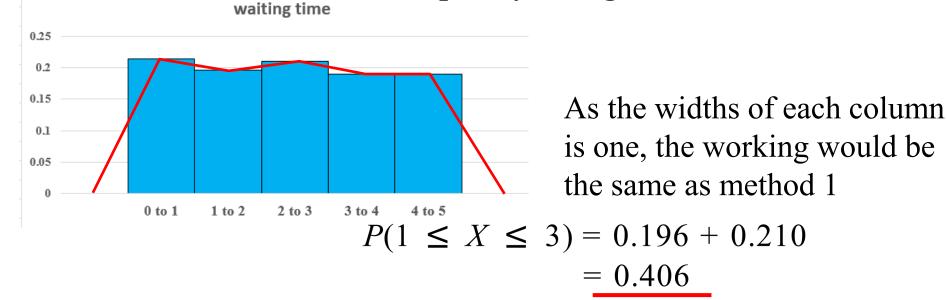
Find $P(1 \le X \le 3)$

Method 1: use relative frequencies

$$P(1 \le X \le 3) = 0.196 + 0.210$$

= 0.406

Method 2: use the relative frequency histogram



Method 3: use the relative frequency polygon

(approximation using the trapezoidal rule)

x	1	1.5	2	2.5	3
f_r	0.205	0.196	0.203	0.210	0.2

 $P(1 \le X \le 3) \approx \frac{0.5}{2} \{ 0.205 + 2(0.196 + 0.203 + 0.210) + 0.2 \}$ = 0.40575

Method 4: use cumulative relative frequencies

$$P(1 \le X \le 3) = F(3) - F(1)$$

= 0.620 - 0.214
= 0.406

Q: how could we find $P(1.5 \le X \le 2.5)$?

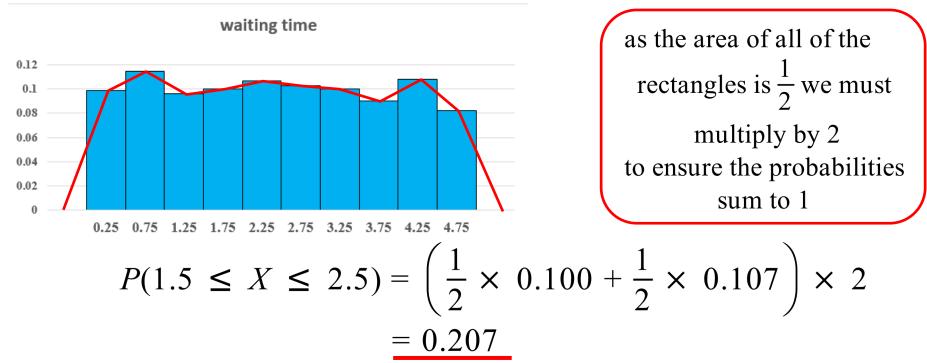
A: reduce the class widths to 0.5

x	0-0.5	0.5 – 1	1 – 1.5	1.5 - 2	2 – 2.5	2.5 - 3	3 – 3.5	3.5 - 4	4 – 4.5	4.5 - 5
f_r	0.099	0.115	0.096	0.100	0.107	0.103	0.100	0.090	0.108	0.082
cf_r	0.099	0.214	0.310	0.410	0.517	0.620	0.720	0.810	0.918	1

Method 1: use relative frequencies

$$P(1.5 \le X \le 2.5) = 0.100 + 0.107$$
$$= 0.207$$

Method 2: use the relative frequency histogram



Method 3: use the relative frequency polygon

(approximation using the trapezoidal rule)

x	1.5	1.75	2	2.25	2.5
f_r	0.098	0.100	0.1035	0.107	0.105

 $P(1.5 \le X \le 2.5) \approx \frac{0.5}{2} \{0.098 + 2(0.100 + 0.1035 + 0.107) + 0.105\} \times 2$ = 0.20675

Method 4: use cumulative relative frequencies

$$P(1.5 \le X \le 2.5) = F(2.5) - F(1.5)$$

= 0.517 - 0.310
= 0.207

Q: what happens as the width of the class $\rightarrow 0$

A: the area under the polygon \rightarrow the area of the histograms

=F(b)-F(a)

i.e. the difference in the cumulative distribution function

Probability Density Functions

The **probability density function** is the equation of the relative frequency polygon as the width of the classes $\rightarrow 0$, and has the following properties;

(1)
$$f(x) \ge 0$$
; $\forall x$
(2) $\int_{-\infty}^{\infty} f(x)dx = 1$
(3) $\int_{a}^{b} f(x)dx = P(a \le X \le b)$

e.g. A bid made at an auction for a real estate property, in millions of dollars, can be modelled by the random variable *X* with the probability density function

$$f(x) = \begin{cases} k(16 - x^2) & 1 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$$

If the value of k
$$k \int_{-1}^{4} (16 - x^2) dx = 1$$
$$k \left[16x - \frac{1}{3}x^3 \right]_{-1}^{4} = 1$$
$$k \left(64 - \frac{64}{3} - 16 + \frac{1}{3} \right) = 1$$
$$27k = 1$$
$$k = \frac{1}{27}$$

a) Find the

 ∞

 ∞

b) Find the cumulative distribution function

$$F(x) = \frac{1}{27} \int_{1}^{x} (16 - x^{2}) dx$$

$$F(x) = \frac{1}{27} \left[16x - \frac{1}{3}x^{3} \right]_{1}^{x}$$

$$= \frac{1}{27} \left(16x - \frac{1}{3}x^{3} - 16 + \frac{1}{3} \right)$$

$$= \frac{1}{81} (48x - x^{3} - 47)$$

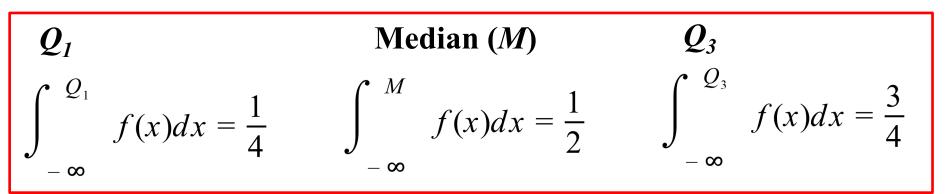
$$F(x) = \begin{cases} 1 & x > 4 \\ \frac{1}{81}(48x - x^3 - 47) & 1 \le x \le 4 \\ 0 & x < 1 \end{cases}$$

c) Find the probability that a bid of more than 3 million dollars will be made P(X > 3) = 1 - F(3)

$$P(X \ge 3) = 1 - F(3)$$

= $1 - \frac{1}{81}(70)$
= $\frac{11}{81}$

Finding Quartiles



e.g. The function f(x) is a pdf for a random variable X.

$$f(x) = \begin{cases} \frac{1}{9}x^2 & 0 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

Find the median

$$\frac{1}{9} \int_{0}^{M} x^{2} dx = \frac{1}{2}$$
$$\frac{1}{27} \left[x^{3} \right]_{0}^{M} = \frac{1}{2}$$

$$M^{3} = \frac{27}{2}$$
$$M = \frac{3}{\sqrt[3]{2}}$$

median is 2.38 (to 2 dp)

Finding the Mode

mode is the global maximum of the probability distribution function

i.e. f'(x) = 0 and f''(x) < 0

Note: global maximum could occur at the extremities of the domain

e.g. determine the mode of the pdf defined by

$$f(x) = \begin{cases} \frac{3}{175}(-x^2 + 2x + 15) & 0 \le x \le 5\\ 0 & \text{otherwise} \end{cases}$$

as f(x) is a quadratic, maximum will occur on the axis of symmetry

$$x = \frac{-2}{-2}$$
$$= 1$$
mode is 1

Exercise 16B; 1a, 3, 4, 5bd, 6 (use 5b), 7, 10, 11, 12, 13, 14, 15