Resisted Motion

Resistance is ALWAYS in the OPPOSITE direction to the motion.
(Newton's $3^{\text {rd }}$ Law)

Case 1 (horizontal line)

Case 2 (upwards motion)

$$
\begin{aligned}
& m \ddot{x}=-R \\
& \ddot{x}=-\frac{R}{m} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
m \ddot{x} & =-m g-R \\
\ddot{x} & =-g-\frac{R}{m}
\end{aligned}
$$

NOTE: greatest height still occurs when $v=0$

Case 3 (downwards motion)

$$
\begin{aligned}
m \ddot{x} & =m g-R \\
\ddot{x} & =g-\frac{R}{m}
\end{aligned}
$$

NOTE: terminal velocity occurs when $\ddot{x}=0$
e.g. (i) 2020 Extension 2 HSC Question 12 a)

A 50 kilogram box is initially at rest. The box is pulled along the ground with a force of 200 newtons at an angle of 30° to the horizontal. The box experiences a resistive force of $0.3 R$ newtons, where R is the normal force, as shown in the diagram.
Take the acceleration g due to gravity to be $10 \mathrm{~m} / \mathrm{s}^{2}$.

a) By resolving the forces vertically, show that $R=400$

$$
\left\{\begin{aligned}
& \text { vertical } F=0 \\
&\left\{\begin{array}{l}
\text { 200sin } 30^{\circ} \\
R+200 \sin 30^{\circ}-50 g
\end{array}\right.=0 \\
& R+100-500=0 \\
& R=400
\end{aligned}\right.
$$

b) Show that the net force horizontally is approximately 53.2 newtons.

$$
\begin{aligned}
m \ddot{x} & =200 \cos 30^{\circ}-0.3 R \\
F_{H} & =100 \sqrt{3}-120 \\
& =53.2 \text { newtons (to } 1 \mathrm{dp})
\end{aligned}
$$

c) Find the velocity of the box after the first three seconds.

$$
\begin{aligned}
m \ddot{x} & =53.2 \\
\frac{d v}{d t} & =\frac{53.2}{50} \\
& =\frac{133}{125}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{v} d v & =\frac{133}{125} \int_{0}^{3} d t \\
v & =\frac{133}{125}(3) \\
& =3.2 \mathrm{~m} / \mathrm{s}(\text { to } 1 \mathrm{dp})
\end{aligned}
$$

(ii) A particle is projected vertically upwards with a velocity of $u \mathrm{~m} / \mathrm{s}$ in a resisting medium.
Assuming that the retardation due to this resistance is equal to $k v^{2}$ find expressions for the greatest height reached and the time taken to reach that height.

$$
\begin{aligned}
m \ddot{x} & =-m g-k v^{2} \\
\ddot{x} & =-g-\frac{k}{m} v^{2}
\end{aligned}
$$

$$
\begin{aligned}
v \frac{d v}{d x} & =\frac{-m g-k v^{2}}{m} \\
\frac{d x}{d v} & =\frac{m v}{-m g-k v^{2}} \\
\int_{0}^{x} d x & =-m \int_{u}^{o} \frac{v d v}{m g+k v^{2}} \\
x & =\frac{m}{2 k} \int_{0}^{u} \frac{2 k v d v}{m g+k v^{2}} \\
& =\frac{m}{2 k}\left[\log \left(m g+k v^{2}\right)\right]_{0}^{u} \\
& =\frac{m}{2 k}\left\{\log \left(m g+k u^{2}\right)-\log (m g)\right\} \\
& =\frac{m}{2 k} \log \left(\frac{m g+k u^{2}}{m g}\right) \\
& =\frac{m}{2 k} \log \left(1+\frac{k u^{2}}{m g}\right)
\end{aligned}
$$

\therefore the greatest height
is $\frac{m}{2 k} \log \left(1+\frac{k u^{2}}{m g}\right)$ metres

$$
\begin{aligned}
& \ddot{x}=-g-\frac{k}{m} v^{2} \\
& \frac{d v}{d t}=\frac{-m g-k v^{2}}{m} \\
& \int_{0}^{t} d t=-m \int_{u}^{0} \frac{d v}{m g+k v^{2}} \\
& t=\frac{m}{k} \int_{0}^{u} \frac{d v}{\frac{m g}{k}+v^{2}} \\
&=\frac{m}{k}\left[\sqrt{\frac{k}{m g}} \tan ^{-1}\left(\sqrt{\frac{k}{m g}} v\right)\right]_{0}^{u} \\
&=\sqrt{\frac{m}{k g}}\left\{\tan ^{-1}\left(\sqrt{\frac{k}{m g}} u\right)-\tan ^{-1} 0\right\} \\
&=\sqrt{\frac{m}{k g}} \tan ^{-1}\left(\sqrt{\frac{k}{m g}} u\right) \quad \therefore \text { it takes } \sqrt{\frac{m}{k g}} \tan ^{-1}\left(\sqrt{\frac{k}{m g}} u\right) \text { seconds } \\
& \text { to reach the greatest height. }
\end{aligned}
$$

(iii) A body of mass 5 kg is dropped from a height at which the gravitational acceleration is g.
Assuming that air resistance is proportional to speed v, the constant of proportion being $\frac{1}{8}$, find;
a) the velocity after time t.

$$
\begin{aligned}
5 \ddot{x} & =5 g-\frac{1}{8} v \\
\ddot{x} & =g-\frac{1}{40} v \\
\frac{d v}{d t} & =\frac{40 g-v}{40} \\
\int_{0}^{t} d t & =40 \int_{0}^{v} \frac{d v}{40 g-v} \\
t & =-40[\log (40 g-v)]_{0}^{v} \\
& =-40\{\log (40 g-v)-\log (40 g)\} \\
& =40 \log \left(\frac{40 g}{40 g-v}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{t}{40}=\log \left(\frac{40 g}{40 g-v}\right) \\
& \frac{40 g}{40 g-v}=e^{\frac{t}{40}} \\
& \frac{40 g-v}{40 g}=e^{-\frac{t}{40}} \\
& 40 g-v=40 g e^{-\frac{t}{40}} \\
& v=40 g-40 g e^{-\frac{t}{40}} \\
& v=40 g\left(1-e^{-\frac{t}{40}}\right) \\
&
\end{aligned}
$$

b) the terminal velocity
terminal velocity ρ ccurs when $\ddot{x}=0$

$$
\text { i.e. } \begin{aligned}
0 & =g-\frac{1}{40} v \\
v & =40 g
\end{aligned}
$$

OR

$$
\begin{aligned}
\lim _{t \rightarrow \infty} v & =\lim _{t \rightarrow \infty} 40 g\left(1-e^{-\frac{t}{40}}\right) \\
& =40 g
\end{aligned}
$$

\therefore terminal velocity is $40 \mathrm{~g} \mathrm{~m} / \mathrm{s}$
c) The distance it has fallen after time t

$$
\begin{aligned}
\frac{d x}{d t} & =40 g\left(1-e^{-\frac{t}{40}}\right) \\
\int_{0}^{x} d x & =40 g \int_{0}^{t}\left(1-e^{-\frac{t}{40}}\right) d t \\
x & =40 g\left[t+40 e^{-\frac{t}{40}}\right]_{0}^{t} \\
x & =40 g\left\{t+40 e^{-\frac{t}{40}}-0-40\right\} \\
x & =40 g t+1600 g e^{-\frac{t}{40}}-1600 g
\end{aligned}
$$

(iv) 2020 Extension 2 HSC Question 16 a)

Two masses, $2 m \mathrm{~kg}$ and $4 m \mathrm{~kg}$, are attached by a light string. The string is placed over a smooth pulley as shown.

The two masses are at rest before being released and v is the velocity of the larger mass at time t seconds after they are released.

The force due to air resistance on each mass has magnitude $k v$, where k is a positive constant.
a) Show that $\frac{d v}{d t}=\frac{g m-k v}{3 m}$

Forces on left mass

$$
\begin{aligned}
2 m \ddot{x} & =T-2 m g-k v \\
T & =2 m \ddot{x}+2 m g+k v
\end{aligned}
$$

Forces on right mass

$$
\begin{aligned}
4 m \ddot{x} & =4 m g-T-k v \\
& =4 m g-(2 m \ddot{x}+2 m g+k v)-k v
\end{aligned}
$$

$$
\begin{aligned}
6 m \ddot{x} & =2 m g-2 k v \\
\ddot{x} & =\frac{m g-k v}{3 m} \\
\frac{d v}{d t} & =\frac{g m-k v}{3 m}
\end{aligned}
$$

b) Given that $v<\frac{g m}{k}$, show that when $t=\frac{3 m}{k} \ln 2$, the velocity of the larger mass is $\frac{g m}{2 k}$

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{m g-k v}{3 m} \\
& v \quad \frac{3 m}{k} \ln 2 \\
& \begin{array}{c}
\int_{0}^{0} \frac{3 m d v}{m g-k v}=\int_{0}^{v} d t \\
\frac{m}{k} \int_{0}^{v} \frac{-k d v}{m g-k v}=\frac{3 m}{k} \ln 2
\end{array} \\
& {[\ln |m g-k v|]_{v}^{0}=\ln 2} \\
& \ln \left|\frac{m g}{m g-k v}\right|=\ln 2 \\
& \text { as } v<\frac{g m}{k} \Rightarrow \frac{m g}{m g-k v}>0 \\
& \frac{m g}{m g-k v}=2 \\
& m g=2 m g-2 k v \\
& 2 k v=m g \\
& v=\frac{m g}{2 k}
\end{aligned}
$$

(v) 2021 Extension 2 HSC Question 14 b)

An object of mass 5 kg is on a slope that is inclined at an angle of 60° to the horizontal. The acceleration due to gravity is $g \mathrm{~ms}^{-2}$ and the velocity of the object down the slope is $v \mathrm{~ms}^{-1}$.

As well as the force due to gravity, the object is acted upon by two forces, one of magnitude $2 v$ newtons and one of magnitude $2 v^{2}$ newtons, both acting up the slope.
a) Show that the resultant force down the slope is

$$
\frac{5 \sqrt{3}}{2} g-2 v-2 v^{2} \text { newtons. }
$$

resolving forces down the plane

$$
m \ddot{x}=5 g \sin 60^{\circ}-2 v-2 v^{2}
$$

$$
=\frac{5 \sqrt{3}}{2} g-2 v-2 v^{2}
$$

b) There is one value of v such that the object will slide down the slope at a constant speed.
Find this value of v in ms^{-1}, correct to 1 decimal place, given that $g=10$.
If the object slides down the slope at a constant speed, $\ddot{x}=0$.

$$
\begin{aligned}
& \text { i.e. } \frac{5 \sqrt{3}}{2} g-2 v-2 v^{2}=0 \\
& 25 \sqrt{3}-2 v-2 v^{2}=0 \\
& v=\frac{2 \pm \sqrt{4+200 \sqrt{3}}}{-4} \\
& \text { but } v>0 ; v=\frac{2-\sqrt{4+200 \sqrt{3}}}{-4} \\
& =4.2 \mathrm{~ms}^{-1} \text { (to } 1 \mathrm{dp} \text {) }
\end{aligned}
$$

