
Polynomial Results
1. If P(x) has k distinct real zeros,                          , then;

is a factor of P(x).
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e.g. Show that 1 and –2 are zeros of                                                   and 
hence factorise P(x).
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2. If P(x) has degree n and has n distinct real zeros,                          , 
then        naxaxaxaxxP  321
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3.   A polynomial of degree n cannot have more than n distinct real 
zeros

e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2.
Write down;

a) a possible polynomial 

  2( )    2 7P x x x   ( )Q x
where - Q(x) is a polynomial and does not have a zero at 2 or –7 

k

- k is a real number 

b) a monic polynomial of degree 3.

  2( )    2 7P x x x  



4.   If P(x) has degree n and has more than n real zeros, then P(x) is 
the zero polynomial.  i.e. P(x) = 0 for all values of x

c) A monic polynomial of degree 4

  2( )    2 7P x x x    x a

where 2 or 7a  

d) a polynomial of degree 5.

  2( )    2 7P x x x   ( )Q x

where - Q(x) is a polynomial of degree 2, 
and does not have a zero at 2 or –7 

k

- k is a real number 



Exercise 10E; 1, 3bd, 4a, 5b, 6a, 8, 10, 12ad, 14

5.   If                       (i.e. the two polynomials are identically equal), 
then the coefficients of each corresponding term must be equal.
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